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ABSTRACT 

 

PRODUCTION OF LACTIC ACID BY SIMULTANEOUS 

SACCHARIFICATION AND FERMENTATION OF HORSE CHESTNUT 

SHELL BY USING Lactobacillus casei 

 

 

 

 

Çetin, Zeynep Başak 

Master of Science, Food Engineering 

Supervisor : Prof. Dr. Deniz Çekmecelioğlu 

Co-Supervisor: Prof. Dr. Haluk Hamamcı 

 

 

August 2022, 124 pages 

 

Lactic acid is a multifunctional organic acid used as an acidifier, flavoring, or 

preservative in textile, food, pharmaceutical, and cosmetic industries. Bacterial 

fermentation is the most preferred method for lactic acid production, but the often-

used refined sugar increases the cost of production. For this reason, a new 

environmentally friendly, sustainable, and low-cost carbon source is being 

researched. 

The seeds of horse chestnut are mostly used in the pharmaceutical industry for 

antioxidant production, while the shells are inert. In the present study, lactic acid 

production processes and efficiency were investigated from pre-treated horse 

chestnut shells as a promising raw material. In addition to separate hydrolysis and 

fermentation,  simultaneous saccharification and fermentation technologies, a new 

method has been established by combining the advantages of these two processes.  

In the developed process, two bioreactors, one for enzymatic hydrolysis and the other 

for fermentation, were connected by hoses and the medium in the reactors was 

circulated through a pump. Thus, the optimum pH and temperature conditions 
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required for the enzyme in the reactor used for enzymatic hydrolysis and for the 

microorganism in the reactor used for fermentation were provided. In addition to the 

effective operation of the enzyme and microorganism, the medium circulation 

between the reactors prevented the decrease in enzyme activity due to irreversible 

product inhibition. In the experiment, lactic acid titers and yields were measured by 

changing the temperature and pH parameters. After enzymatic hydrolysis, the total 

sugar in the hydrolysate was converted to 18.25 g L-1 lactic acid equivalent to a yield 

of 0.18 g g-1 dry horse chestnut shell by L. casei in separate hydrolysis and 

fermentation (SHF). In the simultaneous saccharification and fermentation process, 

using the same parameters, 6.45 g L-1 lactic acid concentration was produced, while 

the yield was 0.065 g g-1 dry horse chestnut shell.  The highest lactic acid titer (42.1 

g L-1) and yield (0.42 g g-1 dry horse chestnut shell) were obtained from the 

simultaneous saccharification and fermentation with a dual bioreactor process 

(SSF2). Based on the results obtained from this study, the simultaneous 

saccharification and fermentation with dual bioreactor method for microorganisms 

and enzymes, whose optimal conditions are not close to each other, gave promising 

results in obtaining valuable end products from lignocellulosic raw materials such as 

horse chestnut shells. 

 

 

Keywords: Horse Chestnut Shell, Enzymatic Hydrolysis, Lactic Acid, Simultaneous 

Saccharification and Fermentation 
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ÖZ 

 

AT KESTANESİ KABUĞUNDAN EŞ ZAMANLI SAKKARİFİKASYON VE 

FERMANTASYON YAPARAK Lactobacillus casei İLE LAKTİK ASİT 

ÜRETİMİ  

 

 

 

Çetin, Zeynep Başak 

Yüksek Lisans, Gıda Mühendisliği 

Tez Yöneticisi: Prof. Dr. Deniz Çekmecelioğlu 

Ortak Tez Yöneticisi: Prof. Dr. Haluk Hamamcı 

 

 

Ağustos, 124 sayfa 

 

Laktik asit, tekstil, gıda, ilaç ve kozmetik endüstrilerinde asitlendirici, aroma verici 

veya koruyucu olarak kullanılan çok işlevli bir organik asittir. Laktik asit üretimi için 

çoğunlukla tercih edilen yöntem bakteriyel fermantasyondur ancak sıklıkla 

kullanılan rafine şeker üretim maliyetini arttırmaktadır. Bu nedenle çevre dostu, 

sürdürülebilir ve düşük maliyetli yeni bir karbon kaynağı araştırılmaktadır. 

At kestanesinin tohumları çoğunlukla ilaç ve antioksidan üretiminde kullanılır, 

kabukları ise atıldır. Mevcut çalışmada umut vaat edici hammadde olarak ön işleme 

tabi tutulmuş at kestanesi kabuğundan laktik asit üretim prosesleri ve verimliliği 

araştırılmıştır. Ayrı hidroliz ve fermantasyon ve eş zamanlı sakkarifikasyon ve 

fermantasyon teknolojilerinin yanı sıra, bu iki prosesin avantajlarını bir araya getiren 

yeni bir yöntem geliştirilmiştir. Geliştirilen yöntemde iki biyoreaktör, biri enzimatik 

hidroliz diğeri fermantasyon için, hortumlar aracılığıyla birbirlerine bağlanmış ve 

reaktörlerdeki besiyerleri  pompa aracılığıyla sirküle edilmiştir. Böylece, enzimatik 

hidroliz için kullanılan reaktörde enzim için, fermantasyon için kullanılan reaktörde 

de mikroorganizma için  gerekli optimal pH ve sıcaklık koşulları sağlanmıştır. Enzim 
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ve mikroorganizmanın efektif çalışmasına ek olarak,  reaktörler arasındaki ortam 

sirkülasyonu enzim aktivitesinde  geri dönüşü olmayan ürün inhibisyonu nedeniyle 

düşüşü önlemiştir. Deneyde sıcaklık ve  pH parametreleri değiştirilirek elde edilen 

laktik asit derişimi ve verimi kıyaslanmıştır. Enzimatik hidrolizden sonra, 

hidrolizattaki  toplam şeker, ayrı hidroliz ve fermantasyonda L. casei aracılığıyla 

18.25 g L-1 laktik aside dönüştürüldü ve verim 0.0.18 g g-1 (kuru at kestanesi kabuğu) 

olarak hesaplandı. Aynı parametrelerin kullanıldığı eş zamanlı sakkarifikasyon ve 

fermantasyon prosesinde 6.45 g L-1 laktik asit elde edilirken verim 0.065 g g-1 olarak 

saptandı, en yüksek laktik asit titresi (42.1 g L-1) ve verimi (0.42 g g-1) ise iki 

biyoreaktörlü  eş zamanlı  sakkarifikasyon ve fermantasyon prosesinde oldu. Bu 

çalışmadan elde edilen sonuçlara göre,  at kestanesi kabuğu gibi lignoselülozik 

hammaddelerden değerli son ürün elde edilmesinde, optimal koşulları birbirine 

yakın olmayan mikroorganizma ve enzim için iki biyoreaktörlü eş zamanlı 

sakkarifikasyon ve fermantasyon yöntemi umut vaat etmektedir. 

 

Anahtar Kelimeler: At Kestanesi Kabuğu, Enzimatik Hidroliz, Laktik Asit, 

Eşzamanlı Sakkarifikasyon ve Fermantasyon 
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CHAPTER 1  

1 INTRODUCTION  

Lactic acid, which was first noticed in sour milk by the Swedish chemist Karl 

Wilhelm Scheele in 1780 and added to the literature, took its place in the industry 

after Louis Pasteur declared that it could be produced by lactic acid bacteria (Alsaheb 

et al., 2015). Today, lactic acid (2-hydroxy propionic acid) is one of the most 

demanded organic acids with its GRAS status (the term indicating that it is safe to 

use in food), especially in the food industry, as well as in cosmetics, pharmaceutical, 

and chemical industries (Gobbetti & Minervini, 2014). Examples of lactic acid usage 

are as preservative and acidifier in beverages, softener, and emulsifier in pastries, or 

for elasticity in the leather industry. Apart from the examples given, lactic acid is 

also used in different fields (Cengiz, 2002; John et al., 2009). The production of 

polylactic acid (PLA), which contributes to the protection of the environment by 

biodegrading in addition to being used as an auxiliary in the specified industries, is 

increasing day by day to replace petroleum-based plastics (Abdel-Rahman et al., 

2011).  

Lactic acid can be produced by chemical methods or by microbial fermentation 

(Sreenath et al., 2001). The most widely used method in the chemical synthesis of 

lactic acid is the hydrolysis of lactonitrile with the help of strong acid (John et al., 

2009). However, since lactonitrile is a petroleum-derived substance and is produced 

from a non-renewable resource, its chemical synthesis cannot meet the global energy 

demand. Furthermore, considering the damage it causes to the environment, it has 

led to the production of lactic acid through microbial fermentation (Marques et al., 

2008). In comparison to the chemical method, the microbial fermentation method 
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allows the use of cheap raw materials, less energy consumption, and the opportunity 

to obtain optically pure D- or L-lactic acid (Abdel-Rahman et al., 2011). 

In recent years, the importance given to the recycling of biological wastes has been 

increasing to obtain cheap raw materials. Among the reusable resources, especially 

lignocellulosic biomass is promising. Lignocellulosic biomass, generally composed 

of cellulose, hemicellulose, and lignin, is the most common renewable carbon source 

in the world, with an annual production of 181.5 billion tons (Paul & Dutta, 2018). 

In addition to being so widespread, easily accessible, and inexpensive, its use as a 

raw material contributes to reducing environmental contamination and pollution. 

Although it is the most common biomass in the world, its approximate consumption 

for feed or energy is limited to 7 billion tons (Dahmen et al., 2019). The main sources 

of lignocellulosic biomass can be listed as agricultural wastes, urban wastes, 

industrial wastes, energy crops, and forest residues (Y. Sun & Cheng, 2002). 

Horse chestnut (Aesculus hippocastanum L.) is found in many countries in Europe, 

Asia, and America, thanks to its extraordinary ability to withstand harsh 

environmental conditions (Rafiq et al., 2016; Šedivá et al., 2013). In addition to its 

durability, its attractive appearance makes it preferred ornamental tree in parks, plots, 

and roadsides (Gullón et al., 2020). Horse chestnut seeds contain toxic substances 

called aesculin, which prevent blood from clotting (Underland et al., 2012). 

Therefore, consuming horse chestnut seeds creates a toxic effect on humans. After 

proper treatment to remove toxic substances, the seeds are still unfitted for human 

consumption. However, the substance aescin obtained from processed horse chestnut 

seeds can be used in pharmaceutical industry for various therapeutic properties, 

namely treatment of chronic venous insufficiency associated with inflammatory 

diseases such as arthritis, rheumatism, tendinitis, sports injuries, and skin 

inflammation, treatment of bladder and gastrointestinal diseases, and antimicrobial 

capabilities (Felipe et al., 2013; Kapusta et al., 2007; Küçükkurt et al., 2010). In 

addition to these beneficial health effects, horse chestnut seeds contain functional 

active compounds such as saponins, flavonoids, proanthocyanidins, coumarins, and 

essential oils (Morales et al., 2018). After the horse chestnut seeds are used in the 
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pharmaceutical industry, the remaining shells can be considered biodegradable 

lignocellulosic waste. 

Although lignocellulosic biomass is a widely available or inexpensive raw material, 

it is unfortunately not suitable for use directly in microbial fermentation. Since it 

contains lignin in addition to cellulose and hemicellulose, it is necessary to subject 

the lignin structure to physical, chemical, and microbiological pretreatments for 

complete transformation. In this way, the surface area is increased, the degree of 

crystallinity decreases, and a porous structure is formed, which increases the 

population of cellulase and hemicellulase enzymes, enabling the conversion of 

lignocellulosic materials into sugar that can be used in fermentation (Bajpai, 2019). 

However, by-products formed during the enzymatic degradation of lignocellulosic 

materials may adversely affect the activity of enzymes. As a solution, increasing the 

amount of enzyme, removal of by-products from the environment by filtration 

techniques, increasing the concentration of β-glucosidases to provide cellobiose 

transformation or simultaneous saccharification and fermentation (SSF) are known 

ways (Ricardo Soccol et al., 2011). SSF prevents product inhibition by rapidly 

consuming the hydrolyzed sugar by microorganisms during fermentation (Abdel-

Rahman et al., 2011). For this reason, its yield is higher than the traditional method 

of separated hydrolysis and fermentation (SHF). In addition, the SSF method is also 

economically advantageous as the process takes place in a single bioreactor (Kádár 

et al., 2004). 

The objective of this study is to evaluate the production processes and efficiency of 

lactic acid with Lactobacillus casei from pre-treated horse chestnut shells. Besides, 

separate hydrolysis and fermentation, and simultaneous saccharification and 

fermentation technologies, a new method has been established by combining the 

advantages of these two processes. Optimum conditions for the highest lactic acid 

yield were investigated by conducting experiments with different temperatures and 

pH values in these three processes. 
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 Lignocellulosic Biomass 

Biomass is generally defined as an organic matter from living or recently living 

organisms produced from atmospheric carbon dioxide and water using sunlight 

through photosynthesis. (Clarke & Preto, 2011). The vast majority of biomass 

consists of plant or plant-based substances. Since they are composed of cellulose, 

hemicellulose, and lignin, they can be specifically referred to as lignocellulosic 

biomass (O. V. Singh & Harvey, 2010). 

Lignocellulosic materials, which were used for energy in the past, could not meet the 

increasing energy demand and left their place to fossil fuels, but due to 

environmental concerns caused by the accumulation of carbon dioxide in the 

atmosphere, increasing prices in the extraction of these resources and fossil fuels 

being a non-renewable energy source, as a result of the researches, it has taken its 

place on the stage of history again as one of the promising candidates that can be 

used instead of non-renewable energy sources (Eiteman & Ramalingam, 2015; 

Gandla et al., 2018).  

It has been observed that the annual production of many lignocellulosic materials, 

such as trees, grasses, and residues after agricultural harvest, reaches 181.5 billion 

tons worldwide (Paul & Dutta, 2018). Of these substances, only 7 billion tons are 

used for energy needs such as heating or cooking, as animal feed, or in the paper 

industry to produce fiber (Szambelan et al., 2018). Lignocellulosic materials are one 

of the materials in the world with a high recyclability potential(Qian, 2013). Thanks 
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to this feature, it provides economic convenience in the production of materials such 

as biofuel, organic acid, or biodegradable and thermoplastic polymers.  

2.1.1 Components of the Lignocellulosic Biomass 

Lignocellulosic materials consist of cellulose, hemicellulose, and lignin, which are 

the three main biopolymers, together with a small amount of protein, pectin, 

inorganic compounds, extractives, and ash (Okolie et al., 2021). The amount of 

cellulose, hemicellulose and lignin contained in the lignocellulosic material may 

vary according to the type of plant, as well as depending on the plant's tissue or 

growing conditions (N. Sun et al., 2011). In general, when the amounts are 

considered, it varies between cellulose (40-50%), hemicellulose (20-40%), and 

lignin (18-35%) (Y. Sun & Cheng, 2002). 

The percentage distribution of common lignocellulosic substances in terms of 

cellulose, hemicellulose, and lignin can be seen in the following Table 2.1. As can 

be seen, some lignocellulosic materials contain a high amount of cellulose, just like 

flax, while others are rich in lignin, like a walnut shell. 
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Table 2.1 Components of some lignocellulosic biomasses  

Lignocellulosic 

biomass 

Cellulose 

(%) 

Hemicellulose 

(%) 

Lignin 

(%) 

References 

Albizzia wood 58.3 8.1 33.2 (Okolie et al., 

2021) 

Almond shell 50.7 28.9 20.4 (Demirbaş, 

2002) 

Aspen wood 60.7 19.1 14.8 (Shen et al., 

2009) 

Barley straw 32.5 25.7 23.0 (Naik et al., 

2010) 

Bamboo 26.0-43.0 30.0 21.0-31.0 (J. Yang et al., 

2019) 

Birch Branches 33.3 23.4 20.8 (Y. Lee et al., 

2013) 

Canola straw 42.4 16.4 14.2 (Adapa et al., 

2009) 

Chestnut shell 38.1 16.7 23.2 (Morales et al., 

2018) 

Coconut shell 20.0 48.8 30.0 (Okolie et al., 

2021) 

Coffee pulp 35.0 46.3 18.8 (Sánchez, 2009) 

Corn cob 45.0 35.0 15.0 (Prasad et al., 

2007) 

Cornstalk 42.7 23.6 17.5 (J. Yang et al., 

2019) 

Esparto grass 33.0-38.0 27.0-32.0 17.0-19.0 (Sánchez, 2009) 

Eucalyptus 48.0 14.0 29.0 (Qian, 2013) 

Flax 71.0 18.6-20.6 2.2 (J. Yang et al., 

2019) 

Flax straw 28.7 26.8 22.5 (Naik et al., 

2010) 

Grasses 25.0-40.0 35.0-50.0 10.0-30.0 (Bajpai, 2019) 



 

 

8 

Table 2.1 (continued) 

Hazelnut shell 26.8 30.4 42.9 (Demirbaş, 

2002) 

Hardwood 40.0-55.0 24.0-40.0 18.0-25.0 (Bajpai, 2019) 

Hemp  68.0 15.0 10.0 (J. Yang et al., 

2019) 

Hemp hurds 44.5 32.8 21.0 (Stevulova et al., 

2014) 

Jute 41.0-48.0 21.0-24.0 18.0-22.0 (J. Yang et al., 

2019) 

Miscanthus straw 47.5 20.9 9.4 (Butler et al., 

2013) 

Oak 53.9 29.0 12.9 (Shen et al., 

2009) 

Oak straw 37.6 23.3 12.9 (Aqsha et al., 

2017) 

Oil palm 65.0 - 29.0 (J. Yang et al., 

2019) 

Olive husk 24.0 23.6 20.4 (Okolie et al., 

2021) 

Pine branches 32.0 32.0 21.5 (J. Yang et al., 

2019) 

Pinecone 32.7 37.6 24.9 (Okolie et al., 

2021) 

Pinewood 38.8 23.6 20.4 (Okolie et al., 

2021) 

Poplar 43.8 14.8 29.1 (Kumar et al., 

2009) 

Rice rusk 35-45 19-25 20.0 (J. Yang et al., 

2019) 

Rice straw 32.1 24.0 18.0 (Howard et al., 

2003) 

 

Salix straw 43.8 14.6 22.5 (Butler et al., 

2013) 
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Table 2.1 (continued) 

Sisal 65.0 12.0 9.9 (J. Yang et al., 

2019) 

Softwood 45.0-50.0 25.0-35.0 25.0-35.0 (Bajpai, 2019) 

Spruce straw 49.4 4.7 27.7 (Butler et al., 

2013) 

Spruce branches 29.0 30.0 22.8 (J. Yang et al., 

2019) 

Sugarcane 

bagasse 

42.4 35.3 20.8 (Esquivel-

Hernández et al., 

2022) 

Sunflower shell 48.4 34.6 17.0 (Demirbaş, 

2002) 

Sweet sorghum  35.0 17.0 23.0 (Qian, 2013) 

Switchgrass 30.0-50.0 10.0-40.0 5.0-20.0 (McKendry, 

2002) 

Timothy grass 34.2 30.1 18.1 (Okolie et al., 

2021) 

Walnut shell 25.6 22.1 52.3 (Demirbaş, 

2002) 

Wheat straw 39.1 24.1 16.3 (Okolie et al., 

2021) 
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Figure 2.1 Representation of cellulose hemicellulose and lignin, the three main 

components of the microfibril in the cell wall of lignocellulosic materials (Dahmen 

et al., 2019) 

2.1.1.1 Cellulose 

Cellulose is considered one of the most important renewable resources in the world 

so its annual production is determined as 7.5×1010 tons (Okolie et al., 2021). It is an 

organic compound found as a structural element in plants, many algae, oomycetes, 

and some bacteria (Yousuf et al., 2020).  

Cellulose is a polymer of glucose with the formula (C6H10O5)n where n expresses 

the degree of polymerization (DP) (Lisa Axelsson et al., 2012). DP is the number of 

glucose units in the molecule and has an important role in determining the properties 

of the polymer. Repeating units of β-D-glucopyranose are connected linearly via β-

(1-4) glycosidic bonds and the β configuration forms the stretched chain structure. 

Then, through hydrogen bonds, a flat sheet structure is formed. In addition, van der 

Waals forces are present in the bond structure of the compound (J. Yang et al., 2019). 
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Units of glucose monomer in cellulose can vary between 7000 to 15000 so it is a 

long-chain polysaccharide (Moon et al., 2011).  

Cellulose turns into fibril structures by hydrogen bonding of the monomer unit in the 

cellulose chain with the monomer unit in the neighboring chain, and with further 

aggregation, fibrils are ordered to a large unit of microfibrils and then into cellulose 

fibers (Habibi et al., 2010; Kumar et al., 2009). As a result, a stable configuration is 

formed. During the formation of this structure, the degree of crystallinity is 

determined by the degree of hydrogen bonding between the chains (Mäki-Arvela et 

al., 2012). Crystalline regions are less susceptible to hydrolysis than amorphous 

(Moon et al., 2011). Moreover, the surface structure and degree of polymerization 

affect hydrolysis of the cellulose (Kumar et al., 2009).  

  

Figure 2.2 Schematic of (a) cellulose unit link β-1,4-glycosidic bonds linearly, (b) 

crystalline and amorphous regions of a cellulose microfibril, and (c) cellulose 

nanocrystals after hydrolysis (Moon et al., 2011) 
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Cellulose is insoluble in water or many solvents, unlike glucose, which is its building 

block, thanks to its crystalline structure, crystallinity, and DP. While this feature is 

important in dealing with microbial spoilage, it also makes diffusion of other 

decomposition products difficult (Brandt et al., 2013; Mudgil, 2017). 

2.1.1.2 Hemicellulose 

Hemicellulose is another biopolymer found in lignocellulosic materials, consisting 

of mixtures of sugar monosaccharides with five to six carbons, with short lateral 

branches either homopolymer or heteropolymer in its structure. The pentose sugars 

in hemicellulose are xylose, rhamnose, and arabinose, while the hexose sugars are 

glucose, mannose, and galactose. It also contains 4-o-methylglucuronic, D-

glucuronic, and D-galacturonic acids (Balat, 2011; Okolie et al., 2021).  

 

 

Figure 2.3 The chemical structure of glucomannan in hardwood (Puls, 1997) 
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Figure 2.4 The chemical structure of arabinoxylan in grasses (Puls, 1997)  

Hemicellulose is composed of approximately 500-3000 monomers, linked by β-

(1,4)-glycosidic bonds or sometimes β-(1,3)-glycosidic bonds (J. Yang et al., 2019). 

Unlike cellulose chains, the polymer structure of hemicellulose does not agglomerate 

even if they form a crystalline structure (Kumar et al., 2009). In addition, its degree 

of polymerization range has changed between 50-200  so, it is amorphous in structure 

and can be easily hydrolyzed (Gibson, 2012; Kumar et al., 2009). However, having 

acetylated side chains in its structure causes it to have a lower molecular weight 

(Brandt et al., 2013; Kumar et al., 2009) 

The content of hemicellulose varies according to the structure and type of biomass. 

A plant may contain more than one type of hemicellulose, and even the amount and 

type of hemicellulose may vary in different parts. Hemicellulose, rich in xylan, is 

more common in hardwoods and cereal, while hemicellulose, rich in glucomannan, 

is observed more in softwoods (R. Sun, 2010). Table 2.2 shows the monomers of 

hemicellulose found in some plants. 
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Table 2.2 Amount of hemicellulose monosaccharide hemicellulose in some plants  

Plant 

Source 

Xyl 

(w/w) 

Man 

(w/w) 

Ara 

(w/w) 

Glu 

(w/w) 

Gal 

(w/w) 

Rha 

(w/w) 

Ref. 

Aspen  2.0 55.0 1.0 41.0 1.0 - (Telema

n et al., 

2003) 

Barley 

 

66.1 0.5 10.6 7.6 3.7 0.4 (R. Sun, 

2010) 

Birch  1.0 68.0 2.0 28.0 1.0 - (Telema

n et al., 

2003) 

Corn 

stover 

89.0 - 5.8 4.2 0.3 - (Naran 

et al., 

2009) 

Date 

palm leaf 

75.0 - 6.3 0.3 1.0 - (Bendah

ou et 

al., 

2007) 

Larch - 1.0 16.0 1.0 79.0 - (Willför 

et al., 

2002) 

Maize 62.7 0.8 15.2 6.3 4.7 0.5 (R. Sun, 

2010) 

Passion 

fruit rind 

29.0 9.0 1.0 42.0 15.0 - (Placket

t, 2011) 

Pine - 7.0 14.0 3.0 69.0 - (Willför 

et al., 

2002) 

Oat 68.3 0.3 11.2 6.1 3.6 0.4 (R. Sun, 

2010) 
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Table 2.2 (continued) 

Rice 56.3 - 14.9 22.3 4.8 0.6 (R. Sun, 

2010) 

Rye 65.3 0.3 11.2 6.1 3.3 0.5 (R. Sun, 

2010) 

Spruce - 30.0 11.0 8.0 35.0 - (Willför 

et al., 

2002) 

Sugarcan

e bagasse 

55.0 1.5 13.0 28.0 2.6 - (Placket

t, 2011) 

Wheat 60.5 0.4 13.8 9.8 4.5 0.8 (R. Sun, 

2010) 

Wheat 

straw 

23.8 0.1 0.2 1.1 0.2 - (Puls, 

1997) 

 

2.1.1.3 Lignin 

Lignin is the third major component found in lignocellulosic materials. It has a 

complex structure due to the random and non-linear bonding of phenolic monomers 

to each other via ester bonds (Reinoso et al., 2018). It consists of three main 

monomers, which can be seen schematically in Figure 2.6, varying according to plant 

species, these are coniferyl alcohol (guaiacyl propanol), p-coumaryl alcohol (p-

hydroxyphenyl propanol), and sinapyl alcohol (syringyl alcohol). These phenolic 

substances are linked with alkyl-aryl, alkyl-alkyl, and aryl-aryl ether bonds. Also, 

lignin forms covalent bonds with hemicellulose, and stable ether bonds with 

arabinose and galactose found in xylan and mannan form a lignin carbohydrate 

complex (Kristensen et al., 2009; Kumar et al., 2009).  
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Figure 2.5 The chemical structure of the main building blocks of lignin (Grzybek 

et al., 2021) 

Herbaceous plants such as grasses generally have the lowest lignin content (17-24%), 

while softwoods (25-35%) have the highest content. The content of lignin varies 

according to the plant species, for example, in softwoods, up to 90% of the lignin 

structure consists of coniferyl alcohol, and in the structure of hardwood lignin, 

sinapyl and coniferyl alcohol are formed at different rates (Harmsen et al., 2010). 

This difference in the composition of the lignin structure is highly effective in 

degradation. 

Thanks to the cross-linking phenolic polymers in its structure, it has a rigid and 

hydrophobic structure. As a result of this feature, it is found in the primary cell wall 

by providing structural support, impermeability, and resistance against microbial 

attack (Kumar et al., 2009; Mäki-Arvela et al., 2012).  

  



 

 

17 

2.1.2 Types of Lignocellulosic Biomass 

Lignocellulosic biomass raw materials can be catagorized as agricultural wastes, 

forest residues, food wastes and wastes left after industrial use. These materials are 

the most promising biomass due to their relatively low cost and easy availability. 

Table 2.3 shows examples of types of lignocellulosic materials. 

Table 2.3 Types of lignocellulosic biomass (Cai et al., 2017) 

Sector Type Examples 

 

Agriculture 

Energy crops Switchgrass, reed, rapeseed, 

sugarcane, corn 

Crop waste Leaves, stover, straws 

 

Forest 
Forest biomass Cedar, poplar, willow, 

eucalyptus 

Forest waste Barks, wood chips, sawdust, 

wood blocks 

 

Industry 
Agro-food waste Rice husk, sugarcane bagasse, 

corn cob 

Wood-industry waste Sawdust from a sawmill, 

recycled newspaper 

Other Lignocellulosic waste Residues from parks, gardens 

 

2.1.2.1 Horse Chestnut 

Horse chestnut (Aesculus hippocastanum L.) is grown in many regions of the world. 

Thanks to its ability to withstand harsh environmental conditions, is a popular 

species from Southeast Europe to North America, from Asia, especially in Nepal, 

India, Pakistan, and Japan to Canada, and from New Zealand to Great Britain (Gullón 

et al., 2020; Rafiq et al., 2016; Šedivá et al., 2013). It is mostly seen as an ornamental 

tree in parks, squares, roadsides, and gardens, because of its durable structure, rapid 
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growth feature, regularly shaped crown leaves, and attractive appearance of thorny 

fruits emerging from white cluster flowers (Weryszko-Chmielewska & Chwil, 

2017).  

Horse chestnut seeds have been used for centuries in both modern medicine and 

alternative treatment methods. As a folk medicine in Turkey, horse chestnut was 

prepared as a tea to reduce kidney stones (Küçükkurt et al., 2010). While it was used 

as a fever reducer in the 18th century, its anti-hemorrhoidal property was discovered 

and started to be used in the 19th century (Kapusta et al., 2007). Although it is mostly 

used for chronic venous insufficiency today, it is widely used in the treatment of 

rheumatoid arthritis, sports injuries, and other inflammatory disorders such as 

inflammation of the skin (Küçükkurt et al., 2010; Margină et al., 2015). Moreover, 

it has been discovered that it helps in the treatment of bladder and gastrointestinal 

problems and has antiaging and antimicrobial properties (Felipe et al., 2013). It has 

such therapeutic properties because it is rich in various functional active compounds 

such as saponins, flavonoids, coumarins, and essential oils. Triterpene saponin 

glycosides such as aescin contained in horse chestnuts have anti-inflammatory, anti-

edematous, and vasoprotective properties and flavonoids such as 7-O-

methylkaempferol have antifungal properties (Chen et al., 2007; Čukanović et al., 

2020; Kurkin et al., 2020). Apart from horse chestnut seeds, which are traditionally 

used in the pharmaceutical industry, horse chestnut shells, which are wasted every 

year, offer a great opportunity given the growing interest worldwide to find new and 

inexpensive raw materials to produce value-added compounds. 

2.2 Pretreatment Methods 

As mentioned earlier, lignocellulosic biomass is the most abundant and promising 

source of carbohydrates used in fermentation. However, due to its complex structure, 

it cannot be used directly by microorganisms. Deterioration of the crystal structure 

of cellulose and physical bonds between lignin and cell wall by physical, chemical, 

or biochemical pretreatment methods increases the surface area, porous structure, 
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and homogeneity, thus increasing the enzyme-substrate interaction and providing 

effective enzymatic hydrolysis. Pretreatment methods not only increase the 

effectiveness, but also contribute to the deterioration of the structure of toxic 

substances that may be harmful during the fermentation process, reduce the 

processing cost due to the use of less enzyme amount, and obtain a purer high-value 

product (Qian, 2013). Figure 2.7 shows the effect of pretreatment on lignocellulosic 

biomass. 

Pre-treatment methods can be used separately or together, but it should be noted that 

a good pre-treatment method should not increase the cost, can be used in much 

lignocellulosic biomass, should not create by-products that will affect the next 

process, and should not cause loss by causing deterioration in carbohydrates (Bajpai, 

2019). Pretreatment methods are shown in Figure 2.6, and their effects on 

lignocellulosic biomass are shown in Figure 2.7. 

 

Figure 2.6  List of pretreatment methods of lignocellulosic biomass 

Physical

• Mechanical 
comminution

• irradiation

• pyrolysis

• hydrotermal

Chemical

• Acid treatment

• Alkali treatment

• Oxidative 
delignification

• Organic solvent 
process

Biochemical

• Enzymatic 
hydrolysis
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Figure 2.7  Effect of pretreatment on the lignocellulosic biomass (Kumar et al., 

2009) 

2.2.1  Physical   Pretreatment Methods 

Physical pretreatment methods provide structural deterioration in lignocellulosic 

materials, without making little or any chemical changes (Waldron, 2010). Physical 

pretreatment methods are mechanical comminution, irradiation (Yousuf et al., 2020) 

pyrolysis (Bajpai, 2019), and hydrothermal (Waldron, 2010). 

In mechanical comminution processes, since the particle size is reduced by dry, wet, 

or vibratory ball milling, chipping, and shredding, the degree of polymerization and 

crystal structure of cellulose is reduced and the surface area accessible by the enzyme 

is increased (Bajpai, 2019; Waldron, 2010; Yousuf et al., 2020). Depending on the 

method and the structure of the lignocellulosic biomass, the particle size changes, 

and its effectiveness differs. For example, according to the research of Alvo and 

Belkacemi (1997), it was observed that the hydrolysis efficiency of alfalfa pretreated 

in the roller mill was increased by almost 25% when compared to the unpretreated 

one, while the same treatment changed the yield of timothy herb only 5%. Moreover, 

it is an important advantage that no inhibitor is formed during these processes. 
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Pyrolysis is another physical pretreatment method (Kumar et al., 2009). Depending 

on the type of lignocellulosic material, it is increased above 200-400°C, and 

decomposition is achieved. During processing, hemicellulose decomposes to xylan 

at 250-350°C, while cellulose decomposes to glucose, usually at 320-400 °C. The 

amount of heat required for lignin, which has the most stable structure, varies 

between 350-500 °C (Yogalakshmi et al., 2022). The remaining biochar after heat 

treatment can be used in fermentation, fertilizer, or electrochemical energy storage 

since it contains 65-90% carbon content (Akom, et al., 2020; Y. Lee et al., 2013). 

Gamma-ray, ultrasound, microwave, electron beam, and ultraviolet light are other 

methods that provide physical pretreatment by giving lignocellulosic biomass 

irradiation. It allows most of the cellulose and hemicellulose to depolymerize, while 

lignin is partially depolymerized due to the destruction of the structure of the cell 

wall (Bajpai, 2019; Yousuf et al., 2020). 

In the hydrothermal method, either steam (0.7 - 4.8 MPa and 160–240 °C) (Agbor et 

al., 2011) or liquid water (180-230 °C) (Mosier et al., 2005; Wyman et al., 2005) at 

high temperatures is applied to the lignocellulosic biomass, making the cellulose 

more accessible and hydrolysis of hemicellulose by removing the lignin structure. 

Physical pretreatment methods are selected according to the nature of the 

lignocellulosic material. Meantime the hot liquid water method or mechanical 

grinding methods are more acceptable in cost, the irradiation method is more difficult 

to implement due to its high cost. 

2.2.2 Chemical Pretreatment Methods 

Chemical pretreatment is another method used in the depolymerization of 

lignocellulosic biomass. Acid treatment, alkali treatment, oxidative delignification, 

and organic solvent process are the main chemical pretreatment methods. 
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Concentrated or diluted hydrochloric acid, nitric acid, phosphoric acid, and sulfuric 

acid are preferred in the acid treatment method (S. B. Kim et al., 2000; Mosier et al., 

2005; Torget et al., 1990). Although this method causes depolymerization of lignin 

structure and hemicellulose to pentoses, mainly xylose, which will facilitate the 

hydrolysis of cellulose, it has disadvantages such as being a high-cost process, 

corrosive effects, and formation of compounds that may be toxic during fermentation 

(Kumar et al., 2009). 

The alkaline pretreatment method is also one of the frequently used chemical 

pretreatment methods. Hydrogen peroxide, sodium hydroxide, potassium hydroxide, 

calcium hydroxide (lime), aqueous ammonia, ammonia hydroxide, and sodium 

hydroxide are the principal preferred bases. In this method, amorphous regions 

(lignin and hemicellulose) are removed, thereby causing changes in the degree of 

polymerization, surface area, crystallinity and porosity of each component in the 

lignocellulosic biomass. Although it does not require extreme environmental 

conditions during its application, it has disadvantages such as the formation of salts 

that cannot be recovered as a result of the reactions that may occur, or the 

incorporation of these salts into the structure of the biomass. In addition, the 

processing time is long and the amount of monosaccharide degradation is low 

(Bajpai, 2019; Taherzadeh & Karimi, 2008; Waldron, 2010).  

Oxidative delignification provides pretreatment of lignocellulosic biomass using 

oxidizing agents such as hydrogen peroxide, ozone, or oxygen (Bajpai, 2019; Bensah 

& Mensah, 2013; Kobayashi et al., 2004). While this pretreatment method ensures 

that lignin is converted into acid, the fact that this acid is an inhibitor in the 

fermentation medium makes the method ineffective. In addition, since almost all the 

hemicellulose is degraded, it reduces the yield of the final product (Lucas et al., 

2012). 

The organic solvent method is to pre-treat the biomass by mixing liquid organic 

solvent under certain temperatures and pressures (Alriols et al., 2010; Y. Sun & 

Cheng, 2002). It is possible to add catalysts such as acid-base or salt to the medium 
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during this process. The most preferred solvents are ethanol, methanol, and acetone. 

(Ichwan & Won Son, 2011). At the end of the process, the hemicellulosic syrup is 

obtained by breaking the glycosidic bonds in hemicellulose, pure lignin is obtained 

by breaking the lignin's bonds with the cell walls as well as hemicellulose, and 

cellulose becomes easily accessible (Conde-Mejía et al., 2012). After removing the 

lignin, the remaining solid material can be washed with water and used in appropriate 

processes. However, the disadvantage is the high cost of chemical materials and the 

formation of inhibitory by-products such as furfural and 5-hydroxymethyl, which are 

formed in the presence of an acid catalyst. 

2.2.3 Biochemical Pretreatment 

Biochemical pretreatment is another method that can prepare lignocellulosic 

materials for enzymatic hydrolysis by microorganisms or enzymes. Among these 

microorganisms, Phanerochaete chrysosporium (Hatakka, 1994) and Ceriporia 

lacerate (Y. Lee et al., 2013), which are the most preferred white-rot fungi, directly 

cause degradation in the lignin structure, while brown rot fungi such as Serpula 

lacrymans (Nurika et al., 2020) and Coniophora puteana (Ray et al., 2010) and soft 

rot fungi like Paecilomyces sp.(Zerva et al., 2014) and Cadophora sp.(Akhtar et al., 

2016), they mainly cause degradation in the cellulose structure, causing minimal 

degradation in the lignin structure. It has been observed that Bacillus circulans 

(Zerva et al., 2014) and Sphingomonas paucimobilis (Taherzadeh & Karimi, 2008) 

are effective in the degradation of lignin, partial degradation of hemicellulose, and 

reducing the degree of polymerization of cellulose. In addition, laccase and 

peroxidase enzymes show supportive properties in the degradation of the lignin 

structure (Y. Sun & Cheng, 2002). 

Although biochemical pretreatment is very advantageous in terms of low energy use, 

little or no chemical requirement, and less harm to the environment, its low 

efficiency is an obstacle to its preference  (Østby et al., 2020). 
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2.3 Enzymatic Hydrolysis  

Lignocellulosic biomass is a raw material with many advantages that can be used in 

the production of high value-added industrial products such as lactic acid, ethanol, 

or biodegradable plastic. In addition to its advantages, it also has disadvantages for 

instance requiring pretreatment and then hydrolysis of cellulose and hemicellulose 

for the partially delignified and depolymerized biomass to be used in fermentation 

by microorganisms (Galbe, 2002).  

Lignocellulosic materials can be hydrolyzed by acid, alkaline, or enzyme. The 

conditions such as high pressure and/or high temperature required during chemical 

hydrolysis of cellulose, the difficulties during the recovery of chemicals, corrosion 

problems, or the possibility of decreased efficiency during the degradation of glucose 

to hydroxymethylfurfural have made enzymatic hydrolysis more preferable (Nieves 

et al., 1998). 

Saccharification using enzymes is a more advantageous method compared to 

chemical processes, as the efficiency is higher, the by-product formation is much 

less, the energy requirement is not so much, and there is no corrosive effect (Bon & 

Ferrara, 2013). On the other hand, the adsorption of the enzyme on the substrate, 

inhibition of cellulase and β-glucosidase due to the rise in the amount of monomer, 

enzyme activity, enzyme load, pH, and temperature are the factors to be considered 

during enzymatic hydrolysis. Moreover, long processing time and enzyme costs 

must be taken into account. To obtain the carbon source from lignocellulosic biomass 

efficiently under optimum condition, it is important to understand both the structure 

of the biomass and the working mechanisms of cellulolytic enzymes (B. Yang et al., 

2011). 
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2.3.1 Cellulase 

Cellulases are enzymes that break down β-1,4 bonds in cellulose chains to obtain 

monomers. It can be obtained from microorganisms such as bacteria, fungi, or 

actinomycetes. Table 2.4 more detailed representation is available. Cellulase 

enzymes, which are mostly used in industry, are produced by Trichoderma reesei 

with its cellulase containing different cellobiohydrolases and endoglucanases for the 

hydrolysis of cellulose (Miettinen-Oinonen & Suominen, 2002). 

Table 2.4  Microorganisms that can be used in cellulase production 

Major group Genus References 

 

 

 

 

 

 

 

 

Fungi 

Aspergillus sp. (Ong et al., 2004) 

Bulgaria sp. (Lübeck, 2018) 

Cladosporium sp. (Abrha & Gashe, 

1992) 

Fusarium sp. (Sukumaran et al., 

2005) 

Humicola sp. (Schülein, 1997) 

Myrothecium sp. (Lübeck, 2018) 

Penicillium sp. (Jørgensen et al., 

2003) 

Schizophyllum sp. (Lübeck, 2018) 

Trichoderma sp. (Sukumaran et al., 

2005) 

 

 

 

Bacteria 

Acetobacter sp, (Lübeck, 2018) 

Acidothermus cellulolyticus (Sukumaran et al., 

2005) 

Bacillus sp. (Mawadza et al., 

2000) 

Bacteriodes sp. (Lübeck, 2018) 
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Table 2.4 (continued) 

 Clostridium sp. (López-Contreras et 

al., 2004) 

Enterobacter sp. (Lokapirnasari et al., 

2015) 

Escherichia coli (Amraini et al., 

2017) 

Geobacillus sp. (Potprommanee et 

al., 2017) 

Gluconacetobacter sp. (Lübeck, 2018) 

Pseudomonas cellulosa (Sukumaran et al., 

2005) 

Rhodothermus marinus (Bjornsdottir et al., 

2006) 

 

 

Actinomycetes 

Cellulomonas sp. (Rajoka & Malik, 

1997) 

Streptomyces sp. (Okeke & Paterson, 

1992) 

Thermononospora sp. (Sukumaran et al., 

2005) 

 

For complete hydrolysis of cellulose, endoglucanases ((EC 3.2.1.4), (EC 3.2.1.2)) 

which provide random breaking of amorphous regions in polysaccharide chains, 

exoglucanases including cellobiohydrolases ((EC 3.2.1.91), (EC 3.2.1.176)) and 

cellodextrinases (EC 3.2.1.74) that operably cleave cellooligosaccharides from chain 

ends and β-glucosidases (EC 3.2.1.21) to prevent irreversible product inhibition from 

cellobiose accumulation by hydrolyzing soluble cellobiose and cellobiose to glucose 

should be used (Bhat, 2000; Buckle et al., 1995; Dimarogona et al., 2012).  
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Figure 2.8 Hydrolysis mechanism of cellulases (G. Singh et al., 2016) 

Teugjas and Väljamäe (2002) investigated the end-product inhibition by hydrolyzing 

bacterial celluloses of cellulases obtained from fungi in their studies. In their 

findings, they observed that cellobiose and glucose were affected primarily by 

cellobiohydrolases, and then by endoglucanases. Decreased enzyme activity due to 

product inhibition also causes a reduction in glucose yield. Besides the increase in 

cellobiose and glucose, Chia-wen et al. (2014) mentioned that other emerging 

monosaccharides such as mannose and galactose also affect the enzyme activity and 

cause a drop in yield. In addition, they noticed in their studies that exoglucanases 

and endoglucanases were most influenced by high monosaccharide concentration, 

and β-glucosidases were less affected by other monosaccharides concentrations than 

glucose. 
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Several methods have been developed to reduce the deactivation of cellulaFse. These 

can be listed as the addition of surfactants (polyoxyethylene glycol, sophorolipid, 

polysorbate 20 or 80) to the hydrolysis medium (Duff et al., 1995; Kristensen et al., 

2009; Y. Sun & Cheng, 2002), the simultaneous saccharification and fermentation 

(SSF) method (Andrić et al., 2010), the creation of different enzyme mixtures (E. 

Kim et al., 1998), the use of membrane reactors (Andrić et al., 2010). 

2.3.2 Hemicellulase 

Hemicellulase is another type of enzyme that facilitates the access of cellulose, 

which is responsible for the hydrolysis of hemicelluloses such as xylan, xyloglucans, 

arabinoxylans, and glucomannans surrounding the cellulose, thus contributing to the 

rise of its productivity. The most common hemicellulose type is xylan. Therefore, 

hemicellulase can also be called xylanases. Just like cellulases, hemicellulase 

contains different types of enzymes. The most important of these are endoxylanases 

(EC 3.2.1.8), which randomly hydrolyze β-1,4 glycosidic bonds to form 

xylooligosaccharides and reduce the degree of polymerization, and β-xylosidases 

(EC 3.2.1.3), which hydrolyze the non-reducing ends of xylooligosaccharides to 

xylose (Buschle-Diller et al., 1999; Meena et al., 2017; Saha, 2003). In addition to 

these enzymes, it may contain a few auxiliary enzymes such as a-L-

arabinofuranosidase, which removes arabinose from the xylan backbone, a-

glucuronidase, which removes 4-O-methyl glucuronic acid, and esterase, which 

hydrolyzes acetyl ester bonds, feruloyl ester bonds and q-coumaryl ester bonds 

(Saha, 2003). Another main component of hemicelluloses is mannans. The enzymes 

used during the hydrolysis of mannans are called  as endo-1,4-β-mannanase, β-

mannosidases, β-glucosidases, α-galactosidases and acetyl mannan esterase 

(Kunamneni et al., 2014; Shallom & Shoham, 2003). 
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Figure 2.9 Hemicellulases are responsible for the hydrolysis of monosaccharides in 

hemicellulose (Shallom & Shoham, 2003) 

While hemicellulases can be obtained from different microorganisms, saprophytic 

microbes generally contain this enzyme in nature. However, regarding industrial use, 

the most important sources are fungi and thermophilic bacteria in terms of adapting 

to different pH and temperatures. These microorganisms are shown in the Table 2.5 

in more detail. 
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Table 2.5 Microorganisms that can be used in hemicellulase production  

Major group Genus References 

 

 

 

 

 

 

Fungi 

Aspergillus niger (Kang et al., 

2004) 

Humicola insolens (Xia et al., 

2015) 

Fusarium graminearum (Conejo-

Saucedo et 

al., 2011) 

Meripilus giganteus (Conejo-

Saucedo et 

al., 2011) 

Penicilium funiculosum (Karboune et 

al., 2009) 

Trichoderma reesei (Dekker, 

1983) 

  

 

 

 

 

 

Bacteria 

Agrobacterium tumefaciens (Shallom & 

Shoham, 

2003) 

Bifidobacterium breve (Shin et al., 

2003) 

Clostridium thermocellum (Kohring et 

al., 1990) 

Caulobacter crescentus (Shallom & 

Shoham, 

2003) 

Escherichia coli (Conejo-

Saucedo et 

al., 2011) 

Thermoanaerobacter ethanolicus (Mai et al., 

2000) 

Actinomycetes Thermomonospora fusca (Irwin et al., 

1994) 
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2.3.3 Lignin Modifying Enzymes and Lignin Degrading Auxiliary 

Enzymes 

Enzymes used in the hydrolysis of lignin can be examined under two different 

headings. The first is enzymes that help lignin hydrolyzation, and the second is 

enzymes that modify the lignin structure (Dhagat & Jujjavarapu, 2021). Although 

auxiliary enzymes cannot degrade the lignin structure on their own, they contribute 

to hydrolysis by incorporating proteins through the production of oxidative hydrogen 

peroxide. Enzymes included in this category can be obtained from the secretomes of 

the white-rot fungus. Enzymes such as aryl alcohol oxidase, glucose oxidase, or 

pyranose 2-oxidase are cited as examples. Moreover, an aerobic environment is 

required for these enzymes to assist in hydrolysis (Levasseur et al., 2008). Lignin-

modifying enzymes are also referred to as ligninases or lignases in the literature. 

Lignin-modifying enzymes, which can be found in bacteria and fungi and examined 

under 4 main headings: laccase, manganese peroxide, lignin peroxidase, and 

versatile peroxidase, provide partial degradation of lignin (Dhagat & Jujjavarapu, 

2021).  

Laccase (EC 1.10.3.2. diphenol: oxygen oxidoreductase) is an oxidase that uses 

molecular oxygen as an oxidizing agent, as well as enables the oxidation of phenolic 

rings to phenoxy radicals, thanks to the four copper atoms it contains in the catalytic 

site. It is involved in the oxidation of many important aromatic compounds such as 

phenolic moieties, aromatic amines, and hydroxylindoles (Baldrian, 2006). 

Lignin peroxidases (EC 1.11.1.14) play an important role in many reactions such as 

breaking the β-0-4 ether bonds and Cα-Cβ bonds in the structure of lignins, as well 

as in the oxidation of benzyl alcohols, phenolic, and non-phenolic compounds. In 

addition, it has many different functions such as the hydroxyl group inclusion, 

forming the quinone structure, and breaking down aromatic rings. Thanks to its high 

redox potential, it can easily oxidize both phenolic, especially non-phenolic, and 

methoxy-substituted lignin  (Wong, 2009). 
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Manganese peroxidase (EC 1.11.1.13) oxidizes Mn2+ to Mn3+, and it can degrade the 

phenolic parts of lignin as an oxidant thanks to Mn3+ chelate and form phenoxy 

radicals. Manganese peroxidase is a type of heme enzyme and contains two a-helices, 

two Ca2+ ions, and five disulfide bridges in its structure. 

Versatile peroxidases (EC 1.11.1.16) have the characteristics of catalytic activities 

of lignin peroxidases and manganese peroxidases. Just like lignin peroxidases, it can 

oxidize non-phenolic compounds thanks to its high redox activity, and Mn2+ like 

manganese peroxidase. Its versatile catalytic activity allows reactions to take place 

on aromatic substrates, regardless of low or high redox potential (Goszczynski et al., 

1994; Martínez et al., 2005). 

2.4 Lactic Acid 

Karl Wilhelm Scheele, a Swedish chemist, noticed lactic acid (LA), an organic 

hydroxy acid type, in sour milk in 1780 and defined it as a component of milk. In 

1808, Jöns Jakob Berzelius discovered that the liquid obtained from meat also 

contained LA, paving the way for Justus von Liebig to find it in dead muscle tissues. 

In the light of this information, the effects of LA on muscle contraction were 

investigated and it was observed that the amount increased in muscle tissues in an 

oxygen-free environment. In 1843, Johann Joseph Scherer proved that there is LA in 

the blood after death in pathological conditions, and Carl Folwarczny declared that 

it was also seen in people who lived in 1858(Kompanje et al., 2007). It was first 

started to be produced on an industrial scale in 1895 by the Boehringer Ingelheim 

company after Louis Pasteur stated that lactic acid could be produced by lactic acid 

bacteria (LAB) in the 1860s (Alsaheb et al., 2015). 

Lactic acid (2-Hydroxypropanoic acid) is an alpha-hydroxy acid type. It has a wide 

range of applications and markets from food to pharmaceutical, cosmetics, and 

chemical industries (Martínez et al., 2005).  Its industrial production was first started 

with its use for acidification and preservation in foods, and it received GRAS status 
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from the FDA (Miller et al., 2019). The usage areas of LA can be exemplified in 

leather tanning for removing hair from animal skin and providing elasticity to the 

skin, pharmaceutical and cosmetic applications for pH regulation, and metal 

separation. Apart from the examples given, lactic acid also has usage areas in 

different niches (Cengiz, 2002). 

Along with the developed technologies and changing environmental factors, the 

trend toward a greener, biodegradable products started, and lactic acid was the source 

of research as a promising organic substance. Ethyl lactate (C5H10O3), an ester of 

lactic acid, is used in many industries as an important green product with its non-

toxic, biodegradable, and good solvent properties, in the production of nitrocellulose, 

as a food additive, and to produce chemicals required for flavoring (Dangpradab & 

Rattanaphanee, 2015). Another product that can be obtained by lactic acid synthesis, 

on which studies are intensive, is polylactic acid (PLA), an aliphatic polyester type. 

PLA is a green product with high potential, which has a wide range of uses from 

surgery and medicine to packaging or from film making to fiber formation. In 

addition, is considered safe for health by the FDA is an important plus (García Ibarra 

et al., 2016). 

2.4.1 Lactic Acid in Global Market 

Lactic acid is a valuable organic substance used in many industries and its demand 

in the global market is increasing day by day. Miller et al. (2018) reported that 75% 

of the lactic acid produced worldwide is produced in the fermentation facilities of 

Galactic, PURAC Corporation, Cargill Incorporated, and Archer Daniels Midland 

Company. While the price list varies according to the usage area of the product (food, 

medical, etc.) and the raw material from which it is produced the approximate sales 

price is 4.0 US$ kg-1 - 5.0 US$ kg-1. Lactic acid consumption was determined as 

approximately 1220 tons in 2016, Alves de Oliveira et al. (2018) stated that the 

demand for lactic acid, which increased its annual global growth by 16.2 %, 

exceeded 1960.1 tons in 2025 and reached the global market for US$ 9.8 billion. In 
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addition to lactic acid, polylactic acid (PLA) has an important place in the global 

market. Leading PLA manufacturers can be listed as NatureWorks LLC, Corbion 

and Total, Galactic, and Cargill companies, respectively. Ratshoshi et al. (2021) 

stated that the approximate selling price of PLA is 5.14 US$ kg-1  and expressed that 

its production could be 328 kt year-1 in 2024. 

2.4.2 Physical and Chemical Properties of Lactic Acid 

Lactic acid, with the molecular formula CH3CH(OH)COOH, is a yellow to white 

color range, syrupy liquid to solid, odorless, and a member of hydroxycarboxylic 

acid. Its designation as a weak acid species is due to its partial dissociation in water 

as well as its associated dissociation constant (Komesu et al., 2017; Regulations, 

2012).  

Table 2.6 Some properties of lactic acid (Ameen & Caruso, 2020; Komesu et al., 

2017) 

Parameters Description 

Molecular Weight 90.08 mol g-1 

Density 1.249 g L-1 at 20°C 

Boiling Point 122.0°C (DL) 103.0°C (D) at 15 mmHg 

Dissociation Constant 3.83(D) 3.79 (L) pKa at 25°C  

Heat Capacity 190 (DL)  J/mol.°C at 20°C 

Heat of Fusion  16.86 (L) 11.33(DL) (kJ/mol) 

 

In its molecular structure, it has a chiral atom to which a hydroxyl group is attached, 

and two terminal carbon atoms, one belonging to the carboxylic group and the other 

to the methyl group. In this way, L(+) lactic acid (dextrorotatory) and D(-) lactic acid 

(levorotatory) exist in optically isomeric form. Although both forms have the same 
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molecular formula, different physical properties are observed. Chemically occurring 

lactic acid is in racemic form, while biologically occurring lactic acid can usually 

approach enantiomeric purity (Ameen & Caruso, 2020; Miller et al., 2019; Teixeira 

et al., 2021).  

 

Figure 2.10 Enantiomers of lactic acid (Casalini et al., 2019) 

2.4.3 Synthesis of Lactic Acid 

Lactic acid can be produced by chemical methods or by microbial fermentation 

(Sreenath et al., 2001).  

The most widely used method in the chemical synthesis of lactic acid is the 

hydrolysis of lactonitrile(2-hydroxypropanenitrile, CH3CHOHCN) with the aid of 

strong acid (John et al., 2009). Firstly, hydrogen cyanide must be added nucleophilic 

to the liquid phase of acetaldehyde under high pressure and in an alkaline medium 

to obtain lactonitrile (Eqn. 2.1). After recovery of lactonitrile, it is hydrolyzed with 

strong and concentrated acid (hydrochloric acid or sulfuric acid) to obtain 

ammonium sulfate salt and crude lactic acid (Eqn. 2.2). In the purification of crude 

lactic acid, methyl lactate ester is obtained by using methanol (Eqn. 2.3). In the next 

step, after the methyl lactate ester distillation and purification process are completed, 

it is hydrolyzed in the presence of an acidic aqueous solution to obtain a racemic 

mixture of lactic acid (Eqn. 2.4) (Ameen & Caruso, 2020; Narayanan et al., 2004). 
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𝐶𝐻3𝐶𝐻𝑂 + 𝐻𝐶𝑁
𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
→      𝐶𝐻3𝐶𝐻𝑂𝐻𝐶𝑁     (Eqn. 2.1)             

𝐶𝐻3𝐶𝐻𝑂𝐻𝐶𝑁 + 𝐻2𝑂 +
1

2
(𝐻2𝑆𝑂4) → 𝐶𝐻3𝐶𝐻𝑂𝐻𝐶𝑂𝑂𝐻 +

1

2
((𝑁𝐻4)2𝑆𝑂4) 

(Eqn. 2.2)     

𝐶𝐻3𝐶𝐻𝑂𝐻𝐶𝑂𝑂𝐻 + 𝐶𝐻3𝑂𝐻 → 𝐶𝐻3𝐶𝐻𝑂𝐻𝐶𝑂𝑂𝐶𝐻3 + 𝐻2𝑂 (Eqn. 2.3) 

𝐶𝐻3𝐶𝐻𝑂𝐻𝐶𝑂𝑂𝐶𝐻3 +𝐻2𝑂 → 𝐶𝐻3𝐶𝐻𝑂𝐻𝐶𝑂𝑂𝐶𝐻 +  𝐶𝐻3𝑂𝐻 (Eqn. 2.4)     

      

Another option used in the chemical synthesis of lactic acid is the oxidation of 

propane in the presence of oxygen and nitric acid to obtain α-nitropropionic acid 

(Eqn. 2.5), and then crude lactic acid as a result of further hydrolysis (Eqn. 2.6) 

(Vaidya et al., 2005). 

However, considering that lactonitrile and propene are substances produced from 

petroleum-derived and non-renewable resources, it becomes clear that it is not 

possible to use chemical synthesis to meet global energy demand. In addition, 

considering the damage they cause to the environment, it has highlighted the 

production of lactic acid through microbial fermentation (Marques et al., 2008).  

𝐶𝐻3𝐶𝐻2𝐶𝐻3 +𝐻𝑁𝑂3 + 𝑂2 →  𝐶𝐻3𝐶𝐻(𝑁𝑂2)𝐶𝑂𝑂𝐻 (Eqn. 2.5) 

𝐶𝐻3𝐶𝐻(𝑁𝑂2)𝐶𝑂𝑂𝐻 + 𝐻2𝑂 →  𝐶𝐻3𝐶𝐻𝑂𝐻𝐶𝑂𝑂𝐻 (Eqn. 2.6)    

 

2.4.3.1 Microbial of Lactic Acid Production and Microorganisms 

Fermentation is defined as the biodegradation of carbohydrates by microorganisms, 

resulting in the formation of metabolites such as ethanol, citric acid, and lactic acid. 

Industrial production of lactic acid by fermentation gained momentum after the 

discovery of Lactobacillus sp. and became the subject of research. Today, 90% of 

the worldwide production of LA is manufactured through microbial fermentation 

(Hofvendahl & Hahn-Hägerdal, 2000). Additionally, the advantages of the microbial 

fermentation method are listed as the possibility of using cheap raw materials, less 

energy consumption, the possibility of obtaining optically pure D- or L-lactic acid, 

and less damage to the environment (Abdel-Rahman et al., 2013).  
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In lactic acid production, different carbon sources can be used together with various 

species of bacterium (Lactobacillus sp., E. coli), fungi (Rhizopus sp.) 

cyanobacterium (Corynebacterium glutamicum), and yeast (Kluyveromyces lactis), 

depending on the desired yield or purity (Abdel-Rahman et al., 2013; Abedi & 

Hashemi, 2020; Miller et al., 2019). 

Many bacterial species can produce LA as a product of primary or secondary 

fermentation. Amen and Caruso (2017) identified Lactic acid bacteria (LAB) 

generally used in lactic acid production as Lactobacillus, Streptococcus, 

Pediococcus, Carnobacterium, Enterococcus, Tetragenococcus, Aerococcus, 

Vagococcus, Leuconostoc, Oenococcus, and Weissella sp. The fact that LAB has 

GRAS status makes them frequently preferred in the food industry (Abdel-Rahman 

et al., 2013). Lactic acid bacteria, which can be isolated from different sources in 

nature, have the characteristics of gram-positive, non-sporing, generally immobile, 

cocci, coccobacilli, or rods (L Axelsson & Narvhus, 2003). 

LAB is generally examined under two main headings, homofermentative 

(homolactic) species such as Lactococcus, Pediococcus, and some Lactobacillus that 

produce only lactic acid during fermentation, and heterofermentative (heterolactic) 

species of Leuconostoc, Weissella, and Carnobacterium sp. (Komesu et al., 2017). 

In heterolactic species, they are divided into two as obligatory and facultative. 

During homolactic LAB metabolizes carbon source, it prefers the Embden-

Meyerhof-Parnas pathway (glycolysis) shown in Figure 2.11, while obligate 

heterolactics use the 6-phosphogluconate/phosphoketolase pathway (Figure 2.12) 

(Ameen & Caruso, 2020). The facultative heterolactic LAB can use both paths. L. 

fermentum, L. parabuchneri, and L. reuteri are an example of obligate 

heterofermentative LAB. Facultative heterofermentative LAB is L. alimentarius, 

Lactobacillus plantarum, Lactobacillus casei, Lactobacillus rhamnosus, 

Lactococcus lactis, Lactobacillus pentosus and Lactobacillus xylosus (Castillo 

Martinez et al., 2013; Komesu et al., 2017). 
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Figure 2.11 Illustration of homolactic lactic acid bacteria metabolizing glucose by 

the Embden–Meyerhof–Parnas pathway (glycolysis) (Vivek et al., 2019) 
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Figure 2.12 Illustration of heterolactic lactic acid bacteria metabolizing glucose by 

the 6-phospho-gluconate/phosphoketolase pathway (Vivek et al., 2019) 
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2.5 Simultaneous Saccharification and Fermentation 

The use of lignocellulosic raw materials with high carbon content in fermentation 

technology has brought along some problems, and different methods have been 

developed to find solutions to these problems. Simultaneous saccharification and 

fermentation (SSF) is one of the most promising methods. Lignocellulosic biomass 

is converted to sugar that can be used in fermentation by cellulase and hemicellulase 

enzymes, but these enzymes are very sensitive to feedback inhibition. SSF prevents 

the irreversible inhibition of enzymes by allowing the hydrolyzed sugar to be used 

by microorganisms immediately during fermentation (Abdel-Rahman et al., 2011). 

Compared to the separate hydrolysis and fermentation (SHF) method, which is the 

traditional production method of fermentative products, it also has an economic 

advantage due to the fact that the process takes place in a single bioreactor and the 

production time is short (Kádár et al., 2004). Furthermore, since the sugar 

concentration is kept at low levels, it leads to a decrease in the osmotic pressure of 

the cells, leading to the manufacturing of products with high added value (Miller et 

al., 2019). In addition to the advantages of SSF, it also has the disadvantage of 

finding an equilibrium point, since the temperature and pH required for hydrolysis 

and fermentation differ (Abdel-Rahman et al., 2011). Table 2.7 shows the alteration 

in the amount of organic acid obtained as a result of the production of some 

lignocellulosic materials by SHF and SSF methods.  As can be seen from Table 2.7, 

the SSF process generally gives more effective results in the production of valuable 

end products from lignocellulosic biomass than the SHF process. 
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Table 2.7 Organic acid production from some lignocellulosic biomass using SHF 

and SSF methods 

Materials Products SHF SSF References 

Aspen sawdust Succinic acid 41.0 (g L-1) 46.0 (g L-1) (Maslova et 

al., 2019) 

Barley straw Ethanol 0.71 (g g-1) 0.83 (g g-1) (Won et al., 

2012) 

Birch sawdust Lactic acid 27.2 (g L-1) 37.3 (g L-1) (Maslova et 

al., 2019) 

Cassava pulp Ethanol 21.16 (g L-1) 29.27 (g L-1) (Zhu et al., 

2012) 

Cellulose Ethanol 0.35 (g g-1) 0.41 (g g-1) 

 

(Drissen et 

al., 2009) 

Corn grain Ethanol 0.640 (g g-1) 0.710 (g g-1) (Szambelan 

et al., 2018) 

Corn stover Lactic acid 0.64 (g g-1) 0.78 (g g-1) (Öhgren et 

al., 2007) 

Jerusalem 

artichoke tubers 

Fumaric acid 42.5 (g L-1) 50.2 (g L-1) (Maslova et 

al., 2019) 

Rice straw Butanol 3.05 (g L-1) 5.24 (g L-1) (Valles et al., 

2020) 

Seaweed Ethanol 8.6 (g L-1) 7.6 (g L-1) (Cho et al., 

2013) 

Sorghum Ethanol 21.6 (g L-1) 26.8 (g L-1) (Ghaffar et 

al., 2014) 

Wheat straw Lactic acid 28.0 (g L-1) 34.7 (g L-1) (Maslova et 

al., 2019) 
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2.6 Aim of the Study 

The thesis study aims to obtain fermentable sugar from horse chestnut shells with 

cellulolytic enzymes via three different processes by Lactobacillus casei. Besides, 

separate hydrolysis and fermentation, and simultaneous saccharification and 

fermentation technologies, a new method has been established by combining the 

advantages of these two processes. In the developed method, two bioreactors were 

connected by hoses, and the medium was passed through each other via a peristaltic 

pump. In this way, optimum conditions are provided for both the enzyme and the 

microorganism while performing simultaneous saccharification and fermentation. 

Different substrate load, temperature, and pH were investigated to determine the 

appropriate hydrolysis and fermentation conditions to metabolize horse chestnut 

shell, which is a lignocellulosic substance that has not been used for such a purpose 

before, to lactic acid by green methods. All three methods were compared in terms 

of the efficiency of production LA. 
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CHAPTER 3  

3 MATERIALS AND METHODS 

3.1 Materials 

Horse chestnuts (Aesculus hippocastanum) were collected from Middle East 

Technical University campus (Turkey) in September 2020. 

ASA Biogazyme 2x cellulolytic enzyme was supplied by ASA Spezialenzyme 

GmbH in Wolfenbüttel, Germany. 

For this study, Lactobacillus casei NRRL B-441 (Northern Regional Research Lab, 

Illinoi, USA) was obtained from H2biotek Limited Company.  

3.1.1 Chemicals 

The chemicals used during the study were all analytical grades. The list of 

chemicals is listed in Appendix A.  

3.1.2 Enzymes 

ASA Biogazyme 2x (From ASA Spezialenzyme GmbH in Wolfenbüttel, Germany) 

enzyme used in industry, Trichoderma sp. origin. Its composition mixture of 

cellulase and hemicellulase enzymes are exo-cellulase (EC 3.2.1.91), endo-

glucanase (EC 3.2.1.4), β-glucosidase (EC 3.2.1.21), xylanase (EC 3.2.1.8).  
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Table 3.1 Activity of ASA Biogazyme 2x (Herstellung Organischer Säuren Für 

Die Polyestersynthese, 2017) 

Enzyme Activity (U/g) 

Exo-cellulase 1050 

Endo-glucanase 117000 

β-glucosidase 290 

Xylanase 150000 

 

3.2 Methods 

3.2.1 Pretreatment of Horse Chestnut Shell 

Fresh horse chestnuts were first autoclaved at 121°C for 15 minutes to facilitate 

separation from their shells and to get rid of aescin, which has an anti-microbial 

effect. Before being hydrolyzed by enzyme, physical processes were applied during 

saccharification to increase the yield. In this way, the surface area was increased, and 

the crystal structure of cellulose was disrupted (Harmsen et al., 2010). After shell 

and seed separation, the moisture content of the shells was reduced to 4%  with 1 m 

s-1 air velocity at 80 °C in a tray dryer (EKSİS Industrial Drying Systems, Isparta, 

Turkey). The dried shells (FRITSCH Industries. 8 55743 Idar-Oberstein, Germany) 

were ground to a particle size of 1 mm and sieved to obtain homogenized particles. 

Finally, the shell powders are packaged and preserved at 4 °C for further use. 

3.2.2 Bacterial Strain and  Medium Preparations 

For this study, Lactobacillus casei NRRL B-441 (Northern Regional Research Lab, 

Illinoi, USA) was obtained from H2biotek Limited Company. Bacteria were 

maintained as stock cultures in a 1:1 ratio of 50% glycerol and liquid growth medium 
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at -80°C. To revive the bacterial culture, the inoculum was made from stock culture 

into pre-sterilized for 15 min at 121°C, 5 ml de Man, Rogosa, and Sharpe (MRS, 

Merck Germany) broths, and incubated for 16 hours at 40 °C and 160 rpm.  

Bacterial cultures grown in MRS broth were used as inoculum in growth media 

containing synthetic or horse chestnut shells. For rapid use, the cells were grown on 

MRS agar at 37 °C and preserved at 4 °C, and regularly renewed every month. The 

growth medium of Hujanen et al. was modified (Hujanen et al., 2001). The content 

of the growth medium is the following: 20 g L-1 glucose, 12 g L-1 yeast extract, 1 g 

L-1 Tween 80, 0.2 g L-1 MgSO4·7 H2O, 0.05 g L-1 MnSO4·4 H2O, 0.5 g L-1 

C2H3NaO2, 1.5 g L-1 KH2PO4, 1.5 g L-1 K2HPO4, 10 g L-1 casein peptone, 30 g L-1 

CaCO3. For fermentation medium, glucose was replaced with dried horse chestnut 

shell dust. 

To obtain growth curve, Lactobacillus casei strain was grown at 40°C in 250 mL 

Erlenmeyer flasks containing 100 mL of sterilized MRS broth. Its optical density 

was recorded every two hours with a spectrophotometer (UV 1202, Shimadzu, 

Japan) at 620 nm. 

3.2.3 Separate Hydrolysis and Fermentation 

3.2.3.1 Enzymatic Hydrolysis of Horse Chestnut Shell 

To obtain sugars for use in fermentation, pre-treated dried horse chestnut shells 

(HCS) were first hydrolyzed by an enzyme. Enzymatic hydrolysis was carried out in 

shaker incubators (Infors HT, Switzerland) with a working volume of 100 ml in a 

250 ml Erlenmeyer flask. The experiments were done in duplicates to get the best 

approach. Hydrolysis was carried out with 10% (w/v) solid pretreated HCS load at 

150 rpm at different temperatures and pH. Samples containing HCS pretreated with 

sodium citrate buffer were autoclaved at 121°C for 15 min and then allowed to cool 

and 65 FPU g-1 ASA-BG (contains exo-cellulase, endo-glucanase, β-glucosidase, 
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and xylanase) enzyme was added. A sample was taken every 8 hours to monitor the 

amount of sugar. A constant amount of monosaccharide was observed after 

approximately 24 h. 

3.2.3.1.1 Effect of the pH and Temperature on the Enzymatic Hydrolysis 

To observe the effect of pH on enzymatic hydrolysis, 0.05 M sodium citrate buffer 

was prepared using 5 M NaOH as 4.5 ± 0.1, 4.8 ± 0.1, 5.0 ± 0.1, 5.5 ± 0.1. Each pH 

was tested sequentially at 50, 55, and 60 °C. 

3.2.3.2 Batch Lactic Acid Fermentation  

Fermentation was done in 250 mL Erlenmeyer flasks with a working volume of 100 

mL. The fermentation medium contains the same components as the growth medium 

except for glucose. HCS was used as a fermentable sugar source instead of glucose. 

The chemicals used in the fermentation medium were added to the hydrolysate, the 

pH was adjusted to 6.0 ± 0.2 with 5 M NaOH, and in addition, 3% (w/v) calcium 

carbonate was added to the fermentation medium to eliminate the negative effect of 

acidity on fermentation by keeping the pH constant. The prepared medium was 

sterilized by autoclaving at 121°C for 15 min before adding 5% (v/v) inoculum to 

ensure aseptic conditions. The experiment was carried out in a shaking incubator 

(Infors HT, Switzerland) at 200 rpm at 40 °C for 48 h. 

3.2.4 Simultaneous Saccharification and Fermentation 

3.2.4.1 Single Bioreactor System 

In this part of the experimental set, serial batch experiments were performed under 

sterile conditions using 1.5 L of the 3 L volume of the jacketed benchtop bioreactor 

for enzymatic hydrolysis and fermentation. 10% (w/v) pretreated horse chestnut shell 
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powder was determined as a solid load. Components in the fermentation medium, 

horse chestnut shells, and bioreactor were autoclaved separately at 121 °C for 15 

min. After cooling, the experiment was started by adding 5% (v/v) inoculum and 65 

FPU g-1 ASA-BG. It was tested at different temperatures and pHs. The shaking speed 

was kept at 200 rpm. 

3.2.4.1.1  Effect of pH and Temperature on Simultaneous Saccharification 

and Fermentation 

An experimental set was set up to determine how pH and temperature changed the 

lactic acid concentration during SSF. The pH was tested at 4.8 ± 0.1, 5.5 ± 0.1, and 

the temperature was set at 50, 55, and 60°C. 

3.2.4.2 Dual Bioreactor System 

In this part of the experiment, serial batch experiments were carried out using 2 

different bioreactors for enzymatic hydrolysis and fermentation. It was developed 

based on the working mechanism of the SSF process. Two 3 L bioreactors with a 

working volume of 1.5 L were connected to each other via hoses, the transition was 

made with a peristaltic pump with almost 0.17 L h-1 flow rate, thus creating a single-

stage process. In this way, optimum conditions for both hydrolysis and fermentation 

were established. Figure 3.1 shows process diagram. Pretreated horse chestnut shells 

with 0.05 M sodium citrate buffer at pH 4.8 and fermentation medium were 

autoclaved at 121 °C for 15 minutes. In addition, both bioreactors were autoclaved 

by adding deionized water to prevent clogging in the lines and to protect the pH 

probes and were evacuated with a peristaltic pump to keep them sterile. After 

reducing the temperature, 65 FPU g-1 ASA-BG was added externally to the 

bioreactor for hydrolysis, and saccharification was started at 200 rpm for different 

temperatures and different solid loading. Simultaneously, the fermentation process 

was started by adding 5% (v/v) inoculum. The sugar requirement for fermentation 



 

 

48 

was provided by HCS. The pH of the bioreactor used for hydrolysis was controlled 

with the help of sodium citrate buffer and monitored automatically. The bioreactor 

employed for fermentation was also kept constant at 6.0 ± 0.2 using 5 M KOH, and 

the stirring speed and temperature were kept constant at 200 rpm and 40°C. 

 

 

Figure 3.1 Schematic  diagram of the two-bioreactor system with simultaneous 

saccharification and fermentation  
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3.2.4.2.1 Effect of Temperature on Enzymatic Hydrolysis  and Fermentation 

Yield  

Solid load and enzyme load were determined as 10% (w/v), 65 FPU/g respectively. 

For enzymatic hydrolysis, 0.05 M sodium citrate buffer (at pH 4.8) was used to 

control pH. To observe the effect of temperature change on the hydrolysis rate, 

experiments were carried out at 50 and 55 °C, and its effects on fermentation yield 

were investigated.  Fermentation was carried out at 40°C, pH 6.0. 5 M KOH was 

used for pH control. Bacterial load was determined as 5% (v/v). The experiment 

period was continued until to obtain a constant monosaccharide and lactic acid 

concentration. 

3.2.4.2.2 Effect of Solid Load on Enzymatic Hydrolysis and Fermentation 

Yield 

In order to monitor the effect of substrate amount on enzymatic hydrolysis and lactic 

acid production, pretreated horse chestnut shell was added as 8%, 10%, 12%, and 14 

% (w/v). Enzyme load was selected as 65 FPU/g. The temperature of the bioreactor 

used for hydrolysis was determined as 55 °C.  pH was controlled by 0.05 M sodium 

citrate buffer (at 4.8 pH). Fermentation was carried out at 40°C, pH 6.0. 5 M KOH 

was used for pH control. Bacterial load was determined as 5% (v/v). The experiment 

period was continued until to obtain a constant monosaccharide and lactic acid 

concentration. 

3.2.5 Analytical Methods 

The pH of samples was measured by benchtop pH meter (PL-700 PC, Gondo 

Electronic Co., Taiwan). Samples taken from the experimental sets at certain time 

intervals were first centrifuged at 14000 rpm for 5 minutes with a laboratory-type 

centrifuge (Mikro 220 R, Hettich Lab Technology, 34 Germany). The supernatant 
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was diluted 100 times and passed through 0.22 μm nylon filters in order not to 

deform the column and not cause contamination in the channels. The carbohydrate 

and organic acid concentrations of the prepared samples were analyzed by high-

performance liquid chromatography (Agilent Technologies, USA) equipped with a 

refractive index detector at 35 °C with a 10 µL sample injection. A Rezex™ ROA‐

Organic Acid H+ (8%) column (300 × 7.8 mm) was used at 55 °C, and 50 mM H2SO4 

mobile phase flows at 0.6 mL min-1. To improve the precision of HPLC analysis, 0.5 

g L-1 succinic acid internal standard (known concentration of a succinic acid was 

added in a sample to measure components of the sample) was used. 

3.2.6 Data Analysis 

The results obtained in the experiments were shown as the mean values of the 

replicates. Analysis of variance (ANOVA) was used for statistical interpretation via 

Minitab 19 (Minitab Inc., UK), and the results were evaluated with the Tukey test 

with a 95% confidence level. When a p-value was lower or equal to 0.05, statistical 

differences between the results were considered significant. 
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CHAPTER 4  

4 RESULTS AND DISCUSSION 

This chapter contains the experimental data on the enzymatic hydrolysis of horse 

chestnut shells through cellulolytic enzyme and the fermentation of lactic acid via 

SHF, SSF, and SSF2 by Lactobacillus casei using hydrolyzate as a carbon source. 

The influence of parameters and methods in experiments were discussed extensively 

in the following subsections. In addition; 

• All experiments were performed in duplicate and the results in graphs and 

tables were prepared by taking the mean values, in addition, all results were 

shown with standard error data. 

• Yield and productivity calculations are given in Appendix B 

• Calibrations of HPLC analyses for the components observed during the 

experiment were made and are given in Appendix C. 

• Growth curve of Lactobacillus casei NRRL B-441 is given in Appendix D. 

• Enzymatic hydrolysis, fermentation and glucose consumption rates are 

given in Appendix E. 

• HPLC Chromogram samples are given in Appendix F. 

• ANOVA results of the experiments are given in Appendix G.  
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4.1  Separate Hydrolysis and Fermentation 

Cellulolytic enzyme from ASA Spezialenzyme GmbH was used in all experiments. 

The working pH range for ASA-BG specified in the ASA(2012) product page 

varies between 4.5 and 6.0, while the temperature range is specified as 50 – 60°C.  

For the separate hydrolysis and fermentation part, all experiments were carried out 

in shaker bottles, and the hydrolyzate contents formed by applying different pH and 

temperatures were compared. 

4.1.1 Effect of pH and Temperature on Enzymatic Hydrolysis 

The amount of substrate, temperature, pH, the structure of the salts in the medium, 

and ionic forces are among the factors that determine enzyme activity. Cheng (1998) 

investigated the effects of buffers K2HPO4/KH2PO4, acetic acid/sodium acetate, and 

citric acid/sodium citrate on the activity of cellulase enzyme. Since the citric 

acid/sodium citrate buffer provides the highest enzyme activity, it was chosen as the 

buffer medium in this study. 

In all experiments, 10% (w/v) solid load of horse chestnut shell by dry weight and 

working volumes of 100 mL were prepared in 250 mL bottles and 65 FPU g-1 ASA-

BG enzyme was added. For the experiment, four different pH values determined as 

4.5, 4.8, 5.0, and 5.5 were used at 50 °C, and then the same procedures were followed 

at 55 °C and 60 °C. The pH of the hydrolysis medium was kept constant by 0.05 M 

sodium citrate buffer and the temperature was controlled through a shaker incubator. 

Figures 4.1, 4.2, and 4.3 show the effect of pH and temperature on enzymatic 

hydrolysis. While determining the hydrolysis time, samples were taken at 8-hour 

intervals and the constant amount of monosaccharide was reached at the 24th hour.  
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Figure 4.1 Glucose and total sugar conversion in g/L at 50 °C for 4.5, 4.8, 5.0, and 

5.5 pH (p ≤ 0.05, two-way ANOVA were applied independently for glucose and total 

conversion data, and the results were given in the graph with their standard errors.) 

 

Figure 4.2  Glucose and total sugar conversion in g/L at 55°C for 4.5, 4.8, 5.0, and 

5.5 pH (p ≤ 0.05, two-way ANOVA were independently for glucose and total 

conversion data, and the results were given in the graph with their standard errors.) 
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Figure 4.3 Glucose and total sugar conversion in g/L at 60 °C for 4.5, 4.8, 5.0, and 

5.5 pH (p ≤ 0.05, two-way ANOVA were applied independently for glucose and total 

conversion data, and the results were given in the graph with their standard errors.) 

Cellobiose, xylose, fructose, and arabinose were also observed during hydrolysis, 

but since the concentration was very low compared to glucose, it was included in the 

total sugar concentration. Based on the results, it is aimed to find optimum pH and 

temperature values for the ASA-BG enzyme. At the end of the 24-hour hydrolysis, 

for the same temperature, pH 4.8 was the optimum value, almost the same sugar 

concentration was observed for pH values of 4.5 and 5.0, and a decrease in sugar 

concentration was detected when pH increased to 5.5. Besides, for all pH values, the 

optimum temperature was found to be 55°C. When compared to 50°C and 60°C, the 

sugar concentration was slightly higher at 50 °C. This difference can be explained 

by the denaturing of the enzyme protein with the increment in temperature (Scopes, 

2002). At 4.8 pH and 55 °C, the glucose concentration, total sugar concentration, and 

yield were found as respectively 21.95 g L-1, 26.40 g L-1, 0.26 g g-1. Hydrolysis 

results are shown in Table 4.1. 

 

pH 4,5  pH 4,8 pH 5,0 pH 5,5

0

10

20

30

C
o

n
ce

n
tr

at
io

n
 (

g
/L

)

 Glucose    Total Sugar



 

 

55 

Table 4.1 Converted glucose and total sugar concentrations, and yields according 

to pH and temperatures change in enzymatic hydrolysis 

Temperature 

(°C) 

pH Glucose 

Concentration 

  (g L-1) 

Total Sugar 

Concentration **  

(g L-1) 

Yield * 

(g g-1) 

 

50 

4.5 12.50 ±0.30 15.50±0.50 0.16±0.01 

4.8 17.05 ±0.55 23.00±1.00 0.23±0.01 

5.0 13.70±0.10 17.45±0.25 0.18±0.00 

5.5 11.55±0.35 13.05±0.45 0.13±0.01 

 

55 

4.5 17.75±0.15 20.60±0.40 0.21±0.00 

4.8 21.95±0.05 26.40±0.20 0.26±0.00 

5.0 17.65±0.65 20.85±0.55 0.21±0.01 

5.5 12.85±0.45 14.60±0.40 0.15±0.00 

 

60 

4.5 11.80±0.50 14.25±0.65 0.13±0.00 

4.8 15.85±0.55 21.00±0.60 0.20±0.01 

5.0 11.95±0.75 14.75±0.55 0.15±0.01 

5.5 10.75±0.25 11.65±0.25 0.12±0.00 

* Grams of total sugar produced/grams of horse chestnut shell added. 

** Total sugar: xylose, arabinose, fructose, and cellobiose 

 

To observe the effect of temperature and pH on enzymatic hydrolysis, two-way 

ANOVA at a 95% confidence level was applied and noticed that pH (p=0.00) and 

temperature (p=0.00) had the same effect for both glucose and total sugar 

concentrations. In addition, it was determined that the interaction of pH and 

temperature could not be evaluated independently of each other for glucose 

concentration (p=0.00) and total sugar concentrations (p=0.02). Furthermore, the 

coefficient of determination (R2) was found 98.73% for glucose and 98.70% for total 

sugar. 
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4.1.2 Batch Fermentation of Lactic Acid 

Initially, the necessary components for the fermentation medium were added to the 

hydrolyzate obtained by enzymatic hydrolysis, and the temperature was risen to 

80°C, for 1 h to stop the enzyme activity. After decreasing the temperature to 50°C, 

55°C and 60°C, the inoculum 5% (v/v) was added under sterile conditions, the 

fermentation process was started. Initial glucose amounts vary in all experiments, 

working volumes were prepared to be 100 mL in 250 mL bottles. Initial pH was 

adjusted to 6.0 ± 0.2 with 5 M NaOH and  30 g L-1 calcium carbonate was added as 

a buffer. The results of the experiments are illustrated in Figures 4.4, 4.5, and 4.6. 

 

Figure 4.4  Result of lactic acid production by shake flask fermentation of horse 

chestnut shell hydrolyzed at 50 °C 
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Figure 4.5 Result of lactic acid production by shake flask fermentation of horse 

chestnut shell hydrolyzed at 55 °C  

 

Figure 4.6 Result of lactic acid production by shake flask fermentation of horse 

chestnut shell hydrolyzed at 60 °C  
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As a result of the experiment, another organic acid production was not observed 

except lactic acid. The fermentation process almost ended at the end of 24 hours and 

stopped completely at the end of the 40th h. Table 4.2 shows the result of lactic acid 

fermentation. Since the experiment time was the same for all shake flasks, the highest 

lactic acid production and productivity were achieved as 18.25 g L-1, 0.46 g L-1 h-1  

as a result of fermentation from hydrolyzate (at 55 °C, 4.8 pH) which has a high 

sugar concentration.  

In the experiment where all shake flasks had the same fermentation medium and 

inoculum size, hydrolysates with different sugar ratios were used. The highest lactic 

acid yield was 0.18 g g-1 with the hydrolyzate obtained from 5.5 pH at 55 °C. Medium 

supplementation, pH-temperature control, and microbial culture are the main factors 

affecting lactic acid yield (Ghaffar et al., 2014; Mussatto et al., 2008). Several studies 

have indicated that using different concentrations of carbon source results in similar 

lactic acid yields when all conditions same (Dey et al., 2012; Yun et al., 2003). 

Although temperature control was provided in the experiments and calcium 

carbonate was used as a buffer for pH control, the pH of the environment decreased 

from 6.0 to 4.3-5.1  due to the accumulation of lactic acid in the environment over 

time. Even though all conditions are the same, the inability to get similar lactic acid 

yields from different sugar concentrations can be explained by the lack of pH control. 

 

Table 4.2. Batch fermentation (at 40°C, 6.0 pH ) results using different hydrolyzed 

in fermentation media  

Temperature 

of 

Hydrolysate 

(°C) 

pH 

of 

Hydrolysate 

Total Sugar 

Concentration    

(g L-1) 

Lactic Acid 

Concentration 

 (g L-1) 

Productivity  

(g L-1 h-1) 

Yield* 

(g g-1) 

Yield** 

(g g-1) 

 

50 

4.5 15.65 ±0.35 10.00±0.00 0.25±0.00 0.64±0.01 0.10±0.00 

4.8 23.00 ±1.00 15.10±0.10 0.38±0.00 0.66±0.02 0.15±0.00 

5.0 17.45±0.25 11.40±0.10 0.29±0.00 0.65±0.00 0.11±0.00 

5.5 13.05±0.45 8.10±0.60 0.20±0.02 0.62±0.03 0.08±0.01 
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Table 4.2 (continued) 

 

55 

4.5 20.60±0.40 12.80±0.40 0.32±0.01 0.62±0.01 0.13±0.00 

4.8 26.40±0.20 18.25±0.55 0.46±0.01 0.69±0.03 0.18±0.01 

5.0 20.85±0.55 14.60±0.20 0.37±0.01 0.70±0.01 0.15±0.00 

5.5 14.60±0.40 11.05±0.85 0.28±0.02 0.76±0.08 0.11±0.01 

 

60 

4.5 14.65±0.35 9.15±0.05 0.23±0.00 0.63±0.01 0.09±0.00 

4.8 20.35±0.45 12.10±0.60 0.30±0.02 0.59±0.02 0.12±0.01 

5.0 14.45±0.55 8.55±0.15 0.21±0.00 0.59±0.03 0.09±0.00 

5.5 11.80±0.30 8.35±0.15 0.21±0.00 0.71±0.01 0.08±0.00 

*Gram of lactic acid produced per gram of glucose hydrolyzed. 

**Gram of lactic acid produced per gram of dry horse chestnut shell added 

4.2 Simultaneous Saccharification and Fermentation  

The pH and temperatures used in simultaneous saccharification and fermentation 

experiments with a single bioreactor were selected according to the operating 

temperature and pH ranges of ASA-BG, and the systems were set up accordingly. 

4.2.1 Effect of Temperature and pH 

In order to determine the effect of temperature on the lactic acid yield gained by 

simultaneous saccharification and fermentation method by L. casei, 4.8 pH 50, 55, 

60°C, and 5.5 pH 50, 55, 60°C experiments were carried out. To keep the pH constant 

in the system, 5.0 M KOH was used, and it was automatically controlled with the 

temperature. Dried horse chestnut shell was added as the solid load at 10% of the 

working volume. 

After the start of the fermentation process, samples were taken at 8 and 16 h intervals, 

and glucose and lactic acid concentrations were monitored (Figure 4.7). At the 40th 

hour of enzymatic hydrolysis and fermentation, the concentration change almost 

stopped, and stable results were obtained at 72nd h. In addition, cellobiose was 

detected in the medium, but it was not specified due to its low concentration. At the 

end of 72 h, glucose and lactic acid were determined at different concentrations of 



 

 

60 

50, 55, and 60 °C at 4.8 pH. The concentration of lactic acid at 50, 55, and 60 °C 

were 16.35 g L-1, 6.45 g L-1, and 2.55 g L-1 respectively. It was noticed that the yield 

and productivity of lactic acid concentration achieved decreased significantly with 

the increase in temperature. Unused glucose amount, which was found to be 

unexpectedly high, was determined as 17.55 g L-1, 23.00 g L-1, 15.50 g L-1 at 50, 55, 

and 60 °C, respectively. Increase in temperature did not reduce the residual glucose 

concentration, the maximum amount was obtained at 55 °C. A similar trend was 

observed for lactic acid and non-consumed glucose concentrations at 50, 55, and 

60°C at 5.5 pH, just like at 4.8 pH. The highest lactic acid concentration was found 

as 18.25 g L-1 at 50 °C, while the highest residual glucose concentration was 

determined as 16.45 g L-1 at 55 °C. The results are given in Table 4.3. 

Table 4.3.  Effect of pH and temperature on the lactic acid production by SSF with 

single bioreactor  

pH Temperature 

(°C) 

Residual 

Glucose 

Concentration    

(g L-1) 

Lactic Acid 

Concentration 

 (g L-1) 

Productivity  

(g L-1 h-1) 

Yield* 

(g/g) 

 

4.8 

50 17.55 ± 0.45 16.35 ± 0.55 0.23 ± 0.01 0.16 ± 0.01 

55 23.00 ± 0.00 6.45 ± 0.15 0.09 ± 0.00 0.07 ± 0.00 

60 15.50 ± 0.20 2.55 ± 0.05 0.04 ± 0.00 0.03 ± 0.00 

 

5.5 

50 14.25 ± 0.25 18.25 ± 0.25 0.25 ± 0.00 0.18 ± 0.00 

55 16.45 ± 0.55 8.10 ± 0.10 0.11 ± 0.00 0.08 ± 0.00 

60 13.40 ± 0.10 3.05 ± 0.15 0.04 ± 0.00 0.03 ± 0.00 

*Gram of lactic acid produced per gram of dry horse chestnut shell added. 

It has been stated in many studies that there is a drop in LA yield due to the departure 

of L. casei from the optimum temperature value (Hao et al., 2021). Although 

Lactobacillus sp. can maintain its viability up to 65°C, serious reductions in yield 

have been detected above 50°C (Haddaji et al., 2015; Qin et al., 2012). To examine 

the thermal inactivation, research was carried out on Lactobacillus plantarum and 

Lactobacillus paracasei; no decrease in the cell number was noticed in L. paracasei 

kept at 50°C, but a linear decrease in the cell number was detected after 15 minutes 
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when the temperature rose to 60°C. For L. plantarum, thermal inactivation started 2 

minutes after 57.5 °C (Capra et al., 2006). For this reason, it is typical for the lactic 

acid concentration to decrease with increasing temperature. Since the cells were 

exposed to high temperatures for a long time, they started to lose their viability after 

a period, and the amount of lactic acid produced lessened with the increase in 

temperature. 

On the other hand, residual glucose amounts were similar to glucose concentrations 

in the hydrolysis part of SHF experiments (Figure 4.7). The fact that the lactic acid 

production rate of L. casei was lower than the rate of enzymatic hydrolysis caused a 

reduction in enzyme activity due to product inhibition of cellulase, just like in SHF 

(Appendix E). Cellulase contains more than one enzyme. Among them, β-

glucosidase, which converts cellobiose to glucose, has an important role. As the 

amount of glucose accumulated in the medium rises, the β-glucosidase activity 

declines, in this case, the amount of cellobiose increases in the medium and leads to 

secondary inhibition of cellulase (Kristensen et al., 2009). In the hydrolysis of 

softwood with cellulase, 10 g/L glucose concentration has been reported to decrease 

the enzyme activity by 80% (Xiao et al., 2004). In another study, Solka Floc SW 40 

was hydrolyzed with the cellulase for 96 hours, as a result, it was noticed that the 

hydrolysis rate decreased from 9.1 to 1.3 g L-1 h-1 within the first 4 h due to product 

inhibition. It was stated that the subsequent decrease in rate remained below 0.5 g L-

1 h-1 (Fan & Lee, 1983). In this case, it can be said that glucose, which cannot be 

used in the production of lactic acid, reduces the enzyme activity, and almost stops 

hydrolysis. This prevented a further increment in glucose concentration. 
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Figure 4.7 Effect on temperature on SSF with single bioreactor a) 50, 55 60°C at 

4.8 b) 50, 55, 60°C at 5.5 pH 

At 4.8 pH, less lactic acid concentration was obtained than at 5.5 pH at all 

temperatures, as expected since 5.5 pH closer to the optimal pH of L. casei. However, 

the difference in concentration was not very large. As can be seen from the test 

results in Table 4.3, the maximum amount of lactic acid was 18.3 g L-1 at 50 °C, 5.5 

pH, and 16.4 g L-1 at 50 °C, 4.8 pH. In addition to the fact that L. casei is known to 

withstand a wide pH range, in a study conducted for four different pH values in the 

4.5 - 6.5 range, it was stated while the LA concentration did not change, only the 

glucose utilization time varied (Büyükkileci & Harsa, 2004; Hossein Nezhad et al., 

2010). 

It has been noticed that ASA-BG is more sensitive to pH change than L. casei. The 

maximum unused glucose concentration was 23.0 g L-1 at 55 °C, 4.8 pH, and 16.5 g 

L-1 at 55 °C, 5.5 pH. Similar results were obtained in the literature. Increasing the 

pH from 5.0 to 5.5 during hydrolysis of pure cellulose with cellulase from 

Trichoderma reesei (optimal pH 5, operating range 4-6) resulted in a reduction in 

sugar yield from 31.7 g kg-1 to 24.7 g kg-1. In another study, it was expressed that 

when sawdust was hydrolyzed with cellulase obtained from Aspergillus niger (pH 
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range 4-6), the enzyme activity at 4.5 pH was 0.0925 IU mL-1, while at 5.0 pH the 

enzyme activity reduced to 0.0444 IU mL-1 (Acharya et al., 2008). 

As a result of a three-way ANOVA performed at a 95% confidence interval, the 

variation of lactic concentration with time, pH, and the temperature was investigated. 

Statistically significant results were obtained when all three variables were 

individual, and it was determined that these three variables affected LA 

concentration. Moreover, all the binary and triple interactions of these three variables 

gave a significant result. Furthermore, time, pH, temperature, and all interactions 

were significant in the residual glucose concentration (p≤0.05).   

4.3 Simultaneous Saccharification and Fermentation with Dual  Bioreactor 

System 

The SSF method was developed to prevent product inhibition of the cellulase 

enzyme. However, although it prevents product inhibition, the achieved yield 

decreases because the optimum pH and temperature conditions required for 

enzymatic hydrolysis and lactic acid fermentation are different. For this reason, a 

different system was developed with 2 bioreactors, and it was aimed to achieve 

higher lactic acid production. 

4.3.1 Effect of Temperature 

The system was prepared for the enzymatic hydrolysis reactor at 50, 55°C, 4.8 pH, 

10% (w/v) solids load, and the optimum conditions (40°C, 6.0 pH) were kept 

constant in the bioreactor employed for fermentation (Figure 4.8). In this way, it is 

aimed to observe the effects of temperature change on enzymatic hydrolysis and 

lactic acid concentration. 

Due to the solution transition between the two reactors, the medium of some enzymes 

and microorganisms has changed. As in SHF experiments, the highest hydrolysis 
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efficiency for ASA-BG was determined at 55 °C, 4.8 pH. However, this determined 

temperature and pH are quite different from the optimum (40°C, 6.0 pH) conditions 

for Lactobacillus casei in lactic acid production.  

To reduce the effect of the sudden temperature difference caused by the medium 

change of L. casei and to alleviate the environmental stress, the first hydrolysis 

temperature used in the experiment was reduced from 55 °C to 50 °C. Although this 

has a positive effect on lactic acid production, it has a more negative effect on 

enzymatic hydrolysis. According to the test results, lactic acid produced at 55 °C had 

the highest production and productivity (42.1 g L-1 0.59 g L-1 h-1) with a yield of 0.42 

g g-1. To examine the effect of temperature and time on lactic acid concentration, a 

two-way ANOVA with a 95 % confidence interval was applied, p ≤ 0.05 and R2 as 

94.7 %. In the light of this finding, it was determined that enzyme activity was more 

sensitive to temperature change than L. casei. The results are given in Table 4.4.  

 

Table 4.4. Effect of temperature on the lactic acid production by SSF with dual 

bioreactor system 

Temperature  

(°C) 

Concentration 

 (g L-1) 

Productivity  

(g L-1 h-1) 

Yield* 

 (g g-1) 

50 32.55 ± 0.55 0.45  ± 0.01 0.33 ± 0.01 

55 42.10 ± 0.20 0.59 ± 0.00 0.42 ± 0.00 

*Gram of lactic acid produced per gram of dry horse chestnut shell added. 

 

 It has been reported that sudden changes in pH and temperature create 

environmental stress on the microorganisms and resulted in a decrease in lactic acid 

concentration (Hao et al., 2021). In addition to environmental stress, moving away 

from the optimum temperature and pH leads to a reduction in LA yield. Qin and co-

workers (2012) investigated the effect of temperature on the lactic acid production 

of L. casei and noticed the lactic acid yield reduced from 0.94 g g-1 at 41 °C to 0.35 

g g-1 at 50 °C. Although the temperature increment decreased the yield,   L. casei can 



 

 

65 

withstand heat shocks up to 75°C and cultivated up to 65°C, as well as to adapt to 

environmental stress by changing the synthesis rate of different specific proteins 

(Haddaji et al., 2015). Besides the temperature, pH changes generate alter in yield, 

but it has been stated that L.casei is less sensitive to pH swap and can grow up to 3.0 

pH (Hossein Nezhad et al., 2010). Moreover, Büyükkileci and Harsa ( 2004) 

investigated the effect of different pH (5.0, 5.5, 6.0, and 6.5) on lactic acid 

fermentation by L. casei, and observed that similar lactic acid concentrations were 

obtained at different fermentation times. Fermentation took 23 hours at pH 5.0, lasted 

12 hours at pH 5.5, 6.0 and 6.5. Thus, it can be said that the change in pH influences 

the fermentation time rather than the concentration of lactic acid. 

Considering this information, it can be said that L. casei has a high chance of growing 

and surviving under environmental stress and can repair the damage caused by stress 

thanks to its modified proteins. Therefore, lactic acid production at 55 °C can be 

expected to exceed 50 °C. While the enzyme was working effectively at 55 °C, L. 

casei, which were transferred to a different medium, were able to repair the damage 

and continue fermentation when they returned to the fermentation medium.  

 

Figure 4.8 Illustrations of SSF with dual bioreactor system experiments with varied 

temperatures (40°C, 6.0 pH used in bioreactor for fermentation ) a) 50°C  b) 55°C 
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As shown in Figure 4.8, at the beginning of the SSF process (0-15 hours for 50 °C, 

0-25 hours for 55 °C), glucose release from the pretreated HCS occurred rapidly, 

with concentrations of 7.6 g L-1 and 15 g L-1, respectively. At this stage, the 

adaptation of L. casei cells to the environment led to the fermentation rate  not 

reaching the enzymatic hydrolysis rate. In the following time, the glucose 

concentration decreased gradually with the decrease in the amount of hydrolysable 

substrate in HCS and the adaptation of the microorganisms to new environment, thus 

the rate of fermentation preceded the rate of hydrolysis.  

4.3.2 Effect of Solid Load 

In this part of the experimental set, it was aimed to obtain a glucose titer that would 

provide higher lactic acid concentration by changing the amount of horse chestnut 

shell. 

The optimum conditions (at 55°C and 4.8 pH) determined for hydrolysis in the SHF 

method were applied for the bioreactor where the enzymatic hydrolysis took place, 

and the optimum conditions for the lactic acid fermentation of Lactobacillus casei 

(40°C and 6.0 pH) were applied in the other bioreactor. While preparing 0.05 M 

sodium citrate buffer for enzymatic hydrolysis, 30 g L-1 calcium carbonate was used 

for lactic acid fermentation and pH was controlled with 5 M KOH. Since the solution 

transition between the reactors was slow and the pH dropped due to lactic acid 

accumulation over time, the pH equalization of the two reactors was close to the 

termination of lactic acid production. Thus, the enzyme activity was almost 

unaffected. 

As the solid load increases, more sugar is hydrolyzed, resulting in more glucose and 

carbon sources available for lactic acid formation. For this reason, it was assumed 

that the increase in lactic acid concentration was dependent on the amount of solid 

load. Therefore, SSF experiments were carried out with 8%, 10%, 12%, and 14% 

(w/v) HCS solids load at 72 hours. As seen in Figure 4.9, there is an increase in lactic 

acid concentration as the solid load increases. Statistical results are significant ( p ≤ 
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0.05) by obtaining similar results in repeated experiments. After the regression 

analysis, it was determined that there was a linear relationship between LA 

concentration and solid load (Figure 4.10). Due to the problems arising from the 

viscosity, it was not possible to carry out experiments above 12% (w/v) solids load. 

In the experiments prepared with different solid-liquid ratios, it was declared that 

lactic acid and hydrolysis efficiency decreased when it was exceeded 20% (w/v) 

(Alves de Oliveira et al., 2018). This is explained by the fact that mixing cannot be 

effective due to the increase in viscosity when the solid load is increased by 20% 

(w/v) or more (Kristensen et al., 2009). The concentration, yield, and productivity of 

fermentations carried out with different solid loads are shown in Table 4.5. Although 

the lactic acid yields were similar at the end of the experiment, a rise in the solid load 

escalated the concentration and fermentation rates (Appendix E) and thus the 

productivity. 

Table 4.5.  SSF with dual bioreactor system results using different solid loads. 

Solid Load 

(%) 

Lactic acid 

Concentration (g L-1) 

Productivity  

(g L-1 h-1) 

Yield* 

 (g g-1) 

8 34.65 ± 0.15 0.48 ± 0.00 0.43 ± 0.00 

10 42.10 ± 0.20 0.59 ± 0.00  0.42 ± 0.00 

12 50.85 ± 0.35 0.71 ± 0.01 0.43 ± 0.00 

*Gram of lactic acid produced per gram of dry horse chestnut shell added. 
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Figure 4.9  Effect of different solid loads on lactic acid accumulation by 

simultaneous saccharification and fermentation method with dual bioreactor system 

a) 8% b) 10 % c) 12% ((p ≤ 0.05) and two-way ANOVA was applied for lactic acid 

accumulation data.) 

 

Figure 4.10 Relationship between lactic acid concentration and solid load. 
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4.4 Comparison in Terms of Lactic Acid Production of SHF, SSF, and SSF 

with Dual Bioreactor System 

In experiments based on the operating temperature and pH of the ASA-BG enzyme 

(in the range of 50-60 C 4.5-6.0 pH),  SHF, SSF, and SSF with dual bioreactor 

processes were used in lactic acid production, and compared in terms of 

concentration, yield, and productivity. The results attained from the study are 

summarized in Table 4.6. In the experiments performed at 55 and 50°C and 4.8 pH, 

the highest yields were achieved as 0.42 g g-1 and 0.33 g g-1 respectively in the SSF 

system with dual bioreactor. SHF followed it with 0.18 g g-1 (55°C), and  0.15 g g-1 

(50°C), while the lowest yield was found in SSF with 0.07 g g-1 (55°C) and 0.16 g g-

1 (50°C). In addition, it was observed that the fermentation rate (at 4.8 pH, 55ºC) of 

SSF2 was almost 1.2 times higher than the fermentation rate of SHF, and almost 4.1 

times higher than that of SSF. On the other hand, when fermentation rates at 50 °C 

and 4.8 pH were compared, it was observed that SSF2 was approximately 1.1 times 

higher than SHF and approximately 1.5 times higher than SSF (Appendix E). Since 

the SSF process was developed to prevent product inhibition that occurs in SHF, 

higher yields are expected. However, in the literature, when SHF and SSF processes 

are compared, SSF has not always been a more efficient process for converting inert 

materials to valuable end products,  in some studies, more efficient results have been 

procured with the SHF process (Table 4.7). In a study of ethanol production, where 

wheat straw is used as raw material, the SHF yield is 0.50 g g-1, while the SSF yield 

is 0.39 g g-1 (Saha et al., 2011). In another study, in the production of butanol from 

the same raw material, 133 g kg-1 yield was determined in SHF and 143 g kg-1 yield 

in SSF(Qi et al., 2019). Since the microorganisms and enzyme brands used in these 

two studies were different, the processes with higher yields varied. In the study where 

high yield SHF is obtained, the optimum conditions between the enzyme and the 

microorganism are far from each other, on the other hand in the study where the high 

yield is gained from SSF, the optimum conditions are closer. 
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Table 4.6  Lactic acid concentration, productivity, and yield results of SHF, SSF, 

and SSF2 processes 

Process Temperature 

(°C) 

Fermentation 

Time  

(h) 

Total 

Time 

(h) 

Lactic Acid 

Concentration 

 (g L-1) 

Productivity 

Based on 

Fermentation 

Time 

(g L-1 h-1) 

Productivity 

Based on 

Total Time 

Yield*  

(g/g) 

 

SHF 

50 40 64 15.10 ± 0.10 0.38 ± 0.00 0.24 ± 0.00 0.15 ± 

0.00 

55 40 64 18.25 ± 0.55  0.46 ± 0.01 0.29 ± 0.01 0.18 ± 

0.00 

 

SSF 

50 72 72 16.35 ± 0.55 0.23 ± 0.01 0.23 ± 0.01 0.16 ± 

0.01 

55 72 72 6.45 ± 0.15 0.09 ± 0.00 0.09 ± 0.00 0.07 ± 

0.00 

 

SSF2 

50 72 72 32.55 ± 0.55 0.45 ± 0.01 0.45 ± 0.01 0.33 ± 

0.01 

55 72 72 42.10 ± 0.20 0.59 ± 0.03 0.59 ± 0.03 0.42 ± 

0.00 

* Gram of lactic acid produced per gram of dry horse chestnut shell added. 

 

The low SSF yield achieved in the experiment was due to the different temperature 

and pH requirements for ASA-BG and Lactobacillus casei. The carbon source in the 

medium was not used in the production of lactic acid by the microorganisms that 

were damaged by the high temperature. This situation also affected enzyme activity, 

just like in SHF, and prevented the increment of the glucose concentration. In order 

to obtain high efficiency in the SSF process, it is necessary to choose the optimum 

conditions of the microorganism and the enzyme close to each other, if the optimum 

conditions cannot be approached, it is necessary to encapsulate the microorganism 

to reduce damage, or to change the process mechanism used (Hetényi et al., 2011; 

Maslova et al., 2019). 
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Figure 4.11 Variation of lactic acid and glucose concentrations of SHF (64 h), SSF 

(72 h), and SSF2 (72 h) processes over time (for SSF2 pH of bioreactor for hydrolysis 

at 4.8, and pH of bioreactor for fermentation at 6.0) a) at 50°C, 4.8 pH b) at 55°C, 

4.8 pH  

The SSF with dual bioreactor process has been developed to produce valuable end 

products from lignocellulosic biomass with high efficiency while using enzymes and 

microorganisms with such different optimum conditions. Although the extraction of 

copper (II) ion (Parus, 2018), and proanthocyanidins which have anti-obesity 

(Kimura et al., 2011) and retinal protective effects (Ishihara et al., 2018) from horse 

chestnut shell, has been studied in the literature, there are no articles in which it is 

used as a carbohydrate source in the production of organic acids, but there are a few 

studies in which chestnut shell is exposed to enzymatic hydrolysis. As a result of 

hydrolysis of different pretreated chestnut shells, an amount of glucose in the range 

of 27.6 - 57.8% was determined (He, Liu, Di, et al., 2016; He, Liu, Gong, et al., 2016; 

K. H. Lee et al., 2021; Maurelli et al., 2013). Similar glucose levels could be expected 

in HCS. In this case, it can be said that almost maximum efficiency was achieved in 

the experiment made by SSF2 since in the study performed by adding 10% solid load 

(w/v), the achieved lactic acid concentration was 42.1 g L-1 at 55 °C and 32.6 g L-1 

at 50 °C. The difference between the two temperatures is due to the enzyme activity, 
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the hydrolysis rate at 55 °C was determined to be approximately 1.7 times higher 

than at 50 °C (Appendix E). 

In addition to the yield gained, the processes have features that are superior to each 

other. Since SSF and SSF2  are single-stage processes, the risk of contamination is 

low, whereas the risk of SHF, which is a two-stage process, is higher. The 

redundancy of the equipment used, the area occupied by this equipment, and the 

energy consumed are similar in SHF and SSF with dual bioreactor, while SSF is 

more advantageous in this regard. The constant lactic acid concentration was 

observed as 64 hours for SHF and 72 hours for SSF2 and SSF in the experiment. 

However, the concentration changes after 48 hours in all three processes can be 

negligible. The lactic acid concentration in SSF2 was 41.1 g/L at the 48th hour and 

42.1 g/L at the 72nd hour.  

Table 4.7 Compilation of studies on the production of valuable end products from 

lignocellulosic biomass by using SHF and SSF processes  

Substrate Process Enzyme  Microorganism Product Concentration 

(g L-1) 

Productivity  

(g L-1 h-1) 

Yield 

 (g g-1) 

Ref. 

Wheat 

Straw 

SSF Celluclast 1.5L 

and β-

glucosidase 

R. oryzae F-814 Lactic 

acid 

33.4 0.84 ± 0.03 0.29 ± 0.01 (Maslova 

et al., 

2019) 

Wheat 

Straw 

SHF Celluclast 1.5L 

and β-

glucosidase 

R. oryzae F-814 Lactic 

Acid 

29.2  0.73 ±0.03 0.33 ± 0.01 (Maslova 

et al., 

2019) 

Wheat 

Straw 

SSF Celluclast 1.5L 

and 

Novozym188 

E. coli FBR5 Ethanol 17.4  0.18 0.20  

(Saha et 

al., 

2011) 

Wheat 

Straw 

SHF Celluclast 1.5L 

and 

Novozym188 

E. coli FBR5 Ethanol 21.9 ± 0.3 0.24 0.25 (Saha et 

al., 

2011) 

Wheat 

Straw 

SSF Cellulase and 

xylanase from 

Imperial Jade 

Bio-

Technology  

C. 

acetobutylicum 

ATCC 824 

Acetone 

Butanol  

Ethanol 

19.18 0.15 0.14 (Qi et al., 

2019) 

Wheat 

Straw 

SHF Cellulase and 

xylanase from 

Imperial Jade 

Bio-

Technology 

C. 

acetobutylicum 

ATCC 824 

Acetone 

Butanol  

Ethanol 

17.75 0.11 0.13 (Qi et al., 

2019) 
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Table 4.7 (continued) 

Corncob SSF Cellulase from 

Meiji 

Pharmaceutic 

A. thermophilus 

TCC 24622 

Rhizopus sp. 

MK-96-1196 

Lactic 

Acid 

24 0.33 0.24 (Miura et 

al., 

2004) 

Corncob SHF Cellulase from 

Meiji 

Pharmaceutic 

Rhizopus sp. 

MK-96-1196 

Lactic 

Acid 

28 0.38 0.28  (Miura et 

al., 

2004) 

Corncob SSF Cellic® CTec2  R. oryzae NLX-

M-1 

Lactic 

Acid 

60.3 1.00 0.60 (Zhang 

et al., 

2015) 

Corncob SHF Cellic® CTec2  R. oryzae NLX-

M-1 

Lactic 

Acid 

34.0 0.71 0.34 (Zhang 

et al., 

2015) 

Wood 

Chips 

SSF glutase-AN 

and Cellic®  

CTec 2  

C. 

acetobutylicum 

NBRC13948 

Acetone 

Butanol  

Ethanol 

13.8  0.10 - (Sasaki 

et al., 

2014) 

Wood 

Chips 

SHF glutase-AN 

and Cellic 

CTec 2 

C. 

acetobutylicum 

NBRC13948 

Acetone 

Butanol  

Ethanol 

12.1  0.16 - (Sasaki 

et al., 

2014) 

Horse 

Chestnut 

Shell 

SSF ASA-BG L. casei NRRL 

B-441 

Lactic 

Acid 

6.45 ± 0.2 0.09 ± 0.00 0.07 ± 0.00 This 

Study 

Horse 

Chestnut 

Shell 

SHF ASA-BG L. casei NRRL 

B-441 

Lactic 

Acid 

18.3 ± 0.6 0.29 ± 0.01 0.18 ± 0.01 This 

Study 

Horse 

Chestnut 

Shell 

SSF* ASA-BG L. casei NRRL 

B-441 

Lactic 

Acid 

42.1 ± 0.2 0.59 ± 0.00 0.42 ± 0.00 This 

Study 

*Simultaneous saccharification and fermentation with dual bioreactor 

 

The findings of studies using lignocellulosic biomass in the production of valuable 

end products by SSF and SHF methods are listed in Table 4.7 together with the 

results obtained from this study. In some studies, the results obtained from the SSF 

process were found to be higher, while in others, the SHF process gave higher results.  

Depending on the optimal condition difference of the microorganism and enzyme, 

the results obtained from the SSF process were found to be higher in some studies, 

while the SHF process gave higher results in others. 
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CHAPTER 5  

5 CONCLUSIONS AND RECOMMENDATIONS 

In this study, fermentative lactic acid production was investigated through separate 

hydrolysis and fermentation, simultaneous saccharification and fermentation, and 

simultaneous saccharification and fermentation with dual bioreactor processes using 

dried horse chestnut shell as the main carbon source. Lactobacillus casei was used 

as the lactic acid-producing microorganism. 

During the enzymatic hydrolysis experiments in the SHF process, the effects of 

temperature and pH on the saccharification of dried horse chestnut shells were 

investigated, and hydrolysis was carried out at 50, 55, 60 °C at pH 4.5, 4.8,   5.0, and 

5.5. In the experiment performed with a working volume of 100 ml in a 250 ml flask, 

the highest total sugar and glucose content was found as 21.95 g L-1 and 26.40 g L-1 

at 55 °C and 4.8 pH, respectively. Thus, optimum conditions for the commercial 

cellulase enzyme (ASA-BG) employed were determined and considered for other 

processes in the study. Then, batch fermentation was started and as a result, the 

highest lactic acid concentration was found as 18.25 g L-1 from the hydrolyzate 

obtained at 55 °C, 4.8 pH. The yield calculated with dried horse chestnut shell was 

0.18 g g-1. In addition, according to the two-way ANOVA results, it was determined 

that both glucose and total sugar conversion were significantly affected by pH and 

temperature (p < 0.05). The hydrolysis time was determined as 24 hours and the total 

process time as 64 hours. 

In SSF experiments where hydrolysis and fermentation were carried out 

simultaneously, experiments were performed at 50, 55, and 60°C, 4.8 and 5.5 pH to 

measure how AS-BG and Lactobacillus casei reacted to temperature and pH. A 

decrease in lactic acid production was noticed with increasing temperature. In 



 

 

76 

addition, while the lactic acid concentration obtained at pH 4.8 for each temperature 

was low, it was higher at pH 5.5. It has also been observed that the microorganism 

reacts more to temperature change rather than pH. The highest residual glucose 

concentration was found at 23.0 g L-1 at 55°C, 4.8 pH. However, since 

microorganisms were negatively affected by high temperature, lactic acid production 

was limited (6.45 g L-1). The best yield was 0.18 g g-1 at 50°C, 5.5 pH. In this 

condition, the lactic acid concentration was found to be 18.25 g L-1, and the residual 

glucose concentration was 14.25 g L-1. In the three-way ANOVA, the effects of 

temperature, pH, and time on lactic acid and residual glucose concentration were 

individually significant (p ≤0.05). Moreover, double, and triple intersections gave 

significant results (p ≤0.05). 

The effects of temperature and solid load on lactic acid concentration were 

investigated in experiments carried out in SSF2. First of all, the temperature of the 

bioreactor employed in hydrolysis was set to 50, 55°C, and the temperature of the 

bioreactor used for fermentation was kept constant at 40°C. The lactic acid 

concentration and yield achieved were 42.1 g L-1, 0.42 g g-1 at 55°C, 32.55 g L-1, 

0.33 g g-1 at 50°C. As in the SSF experiments, higher lactic acid concentration was 

not obtained at 50°C because the continuous transition between the bioreactors 

allowed the bacteria to maintain their viability even though they were damaged by 

the high temperature. Thus, there was no decrease in lactic acid production rate 

(Appendix E), and hydrolysis and fermentation could be carried out under optimum 

conditions. 

Secondly, SSF2 experiments were carried out with 8%, 10%, 12%, and 14%(w/v) 

solids load to investigate the effect of substrate amount on lactic acid production. 

However, due to the difficulties in handling the HCS, the amount of solid load could 

not be increased above 12% (w/v). A linear increase in lactic acid concentration was 

observed as the solid load amount increased. Two-way ANOVA was applied to solid 

loads-time and temperatures-time. The results showed both of them were significant 

(p ≤ 0.05) 
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The three processes used in the study were compared with each other at 55°C and 

50°C, at 4.8 pH, with 10% (w/v) solids load. At 55°C, 4.8 pH, the highest lactic 

concentration and yield were achieved in SSF2 (42.10 g L-1, 0.42 g g-1), followed by 

SHF (18.25 g L-1, 0.18 g g-1), and SSF (6.45 g L-1, 0.07 g g-1) was the lowest among 

them. At 50 °C, maximum results were also obtained at SSF2 (32.55 g/L, 0.33 g/g), 

while SSF (16.35 g L-1, 0.16 g g-1) and SHF (15.10 g L-1, 0.15 g g-1) had little 

difference between. At both temperatures, the results in SSF2 were way ahead of 

other processes by a large margin. It was noticed that the fermentation rate of SSF2 

(at 4.8 pH, 55ºC) was approximately 1.2 times higher than that of SHF and 

approximately 4.1 times higher than SSF. Fermentation rate of SSF2 at 50 °C and 

4.8 pH were found to be approximately 1.1 times higher than SHF and 1.5 times 

higher than SSF (Appendix E). In this case, the newly developed SSF2 method has 

proven to be an ideal system to produce valuable end products from lignocellulosic 

raw material for enzymes and microorganisms whose optimum conditions do not 

have approximate values. In addition, it has been determined that the horse chestnut 

shell is promising lignocellulosic biomass in the production of valuable end products 

by fermentation. However, further studies should be done before using the SSF2 

method and horse chestnut shells in large-scale production. The effect of applying 

different pre-treatment processes on horse chestnut shells, strain change, and enzyme 

load on yield should be examined. Moreover, the rate of transition between 

bioreactors and supplementation of nitrogen/vitamin/mineral sources should be 

optimized. After investigating the effects of these parameters on the cost, an 

economical lactic acid production bioprocess can be developed. 
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 APPENDICES 

A. INFORMATION ON CHEMICALS AND PRODUCERS  

Table A.1 The list of chemicals and producers 

Chemicals Producers 

D-(+)-Glucose monohydrate Sigma-Aldrich (St. Lois, MO, USA) 

Citric acid monohydrate Merck (Darmstadt, Germany) 

Trisodium citrate dihydrate Merck (Darmstadt, Germany) 

Sodium hydroxide  Merck (Darmstadt, Germany) 

L-(+)-Arabinose Fluka Chemie GmbH (Germany) 

Yeast Extract Merck (Darmstadt, Germany) 

D- (+)-Galactose  Fluka Chemie GmbH (Germany) 

D- (+)-Xylose Sigma-Aldrich (St. Lois, MO, USA) 

D- (-)-Fructose Merck (Darmstadt, Germany) 

D- (+)-Cellobiose AppliChem GmbH (Germany) 

MRS Broth Merck (Darmstadt, Germany) 

Peptone from casein Condalab (Madrid, Spain) 

Tween 80 Merck (Darmstadt, Germany) 

Glycerol Merck (Darmstadt, Germany) 

Sulfuric acid  Merck (Darmstadt, Germany) 

D- (-)-Lactic acid Sigma-Aldrich (St. Lois, MO, USA) 

Succinic acid disodium salt Sigma-Aldrich (St. Lois, MO, USA) 

Potassium hydroxide  Emir Kimya (Turkey) 

Dipotassium hydrogen phosphate  Merck (Darmstadt, Germany) 

Potassium dihydrogen phosphate  Merck (Darmstadt, Germany) 

Magnesium sulfate heptahydrate Merck (Darmstadt, Germany) 

Manganese (II) sulfate Horosan Kimya 

Calcium carbonate Unknown 

Glycerol Merck (Darmstadt, Germany) 

Dihydrogen potassium sulfate Sigma-Aldrich (St. Lois, MO, USA) 
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B. PRODUCTIVITY AND YIELD CALCULATIONS OF ENZYMATIC 

HYDROLYSIS AND FERMENTATION  

The yield and productivity calculations are defined in this section.  

 

Yield of enzymatic hydrolysis  = 
total sugar produced (g/L) 

dried horse chestnut shell added (g/L)
 

 

Yield of lactic acid  = 
lactic acid produced (g/L) 

dried horse chestnut shell added (g/L)
 

  

Productivity of lactic acid  = 
lactic acid produced (g/L) 

total time (h)
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C. STANDARD CURVES OF HPLC 

 

Figure C.1 Standard curve of glucose 

 

Figure C.2 Standard curve of xylose 
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Figure C.3  Standard curve of cellobiose 

 

Figure C.4  Standard curve of fructose 
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Figure C.5 Standard curve of arabinose 

 

Figure C.6 Standard curve of succinic acid 
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Figure C.7  Standard curve of lactic acid 
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D. OPTICAL DENSITY ANALYSIS 
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Figure D.1  Growth curve of Lactobacillus casei NRRL B-441 at 40ºC fitted with 

the Gompertz model. 
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E. ENZYMATIC HYDROLYSIS AND FERMENTATION RATES 

The rates of enzymatic hydrolysis and fermentation were found by curve fitting 

approach.  
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Figure E.1   Fermentation and glucose consumption rates in the separate hydrolysis 

and fermentation process (hydrolysate from solution at 50ºC, 4.5, 4.8, 5.0, and 5.5 

pH, fermentation at 40ºC, 6.0 pH) 
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Figure E.2 Fermentation and glucose consumption rates in the separate hydrolysis 

and fermentation process (hydrolysate from solution at 55ºC, 4.5, 4.8, 5.0, and 5.5 

pH, fermentation at 40ºC, 6.0 pH) 
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Figure E.3 Fermentation and glucose consumption rates in the separate hydrolysis 

and fermentation process (hydrolysate from solution at 60ºC, 4.5, 4.8, 5.0, and 5.5 

pH, fermentation at 40ºC, 6.0 pH) 
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Figure E.4 Hydrolysis and fermentation rates in the simultaneous saccharification 

and fermentation process (at 4.8 pH, 50, 55, and 60 ºC) 
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Figure E.5 Hydrolysis and fermentation rates in the simultaneous saccharification 

and fermentation process (at 5.5 pH, 50, 55, and 60 ºC) 
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Figure E.6 Hydrolysis and fermentation rates in the simultaneous saccharification 

and fermentation with dual bioreactor process (hydrolysis bioreactor at 4.8 pH, 50 

and 55 ºC, fermentation bioreactor at 6.0 pH, 40 ºC) 
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Figure E.7 Hydrolysis and fermentation rates in the simultaneous saccharification 

and fermentation with dual bioreactor process with 8, 10, and 12 % (w/v) solid loads 

(hydrolysis bioreactor at 4.8 pH, 50 and 55 ºC, fermentation bioreactor at 6.0 pH, 40 

ºC) 
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F. HPLC CHROMATOGRAM SAMPLES 

 

 

 Figure F.1 Chromatogram of enzymatic hydrolysis in SHF (xylose at 11.04 min, 

glucose at 12.93 min, and succinic acid at 16.63 min)  

 

 

 Figure F.2 Chromatogram of SSF2 (glucose at 13.12 min, succinic acid at 16.63 

min, and lactic acid at 19.83 min)  
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G. STATISTICAL ANALYSIS OF DATA  

 

Table G.1 Two-way ANOVA for pH and temperature effect on total sugar 

concentration in the hydrolysis of SHF  

Source DF Adj SS Adj MS F-Value P-Value 

pH 3 312.778 104.259 216.08 0.000 

Temperature 2 115.067 57.534 119.24 0.000 

pH*Temperature 6 12.029 2.005 4.16 0.017 

Error 12 5.790 0.483  

Total 23 445.665  

S = 0.6946 R-Sq = 98.70 % R-sq(adj) = 97.51 % 

 

Table G.2 Two-way ANOVA for pH and temperature effect on glucose 

concentration in the hydrolysis of SHF  
Source DF Adj SS Adj MS F-Value P-Value 

pH 3 122.468 40.8228 151.20 0.000 

Temperature 2 112.210 56.1050 207.80 0.000 

pH*Temperature 6 16.747 2.7911 10.34 0.000 

Error 12 3.240 0.2700  

Total 23 254.665  

S = 0.5196 R-Sq = 98.73 % R-sq(adj) = 97.56 % 

 

Table G.3 Three-way ANOVA for time, pH, and temperature effect on lactic 

acid concentration  in the SSF process 
Source DF Adj SS Adj MS F-Value P-Value 

  Time 6 773.82 128.969 303.20 0.000 

  pH 1 30.60 30.601 71.94 0.000 

  Temperature 2 1406.72 703.360 1653.58 0.000 

  Time*pH 6 8.22 1.371 3.22 0.011 

  Time*Temperature 12 393.72 32.810 77.13 0.000 

  pH*Temperature 2 11.02 5.508 12.95 0.000 

Time*pH*Temperature 12 15.63 1.303 3.06 0.004 

Error 42 17.87 0.425  

Total 83 2657.59  

S = 0.6522 R-Sq = 99.33 % R-sq(adj) = 98.67 % 

 

 

 

 



 

 

123 

 

Table G.4 Three-way ANOVA for time, pH, and temperature effect on 

hydrolyzed glucose concentration  in the SSF process 

Source DF Adj SS Adj MS F-Value P-Value 

  Time 6 2486.66 414.444 1001.82 0.000 

  pH 1 216.00 216.001 522.13 0.000 

  Temperature 2 273.32 136.659 330.34 0.000 

  Time*pH 6 43.12 7.186 17.37 0.000 

  Time*Temperature 12 130.17 10.848 26.22 0.000 

  pH*Temperature 2 87.94 43.968 106.28 0.000 

Time*pH*Temperature 12 26.17 2.181 5.27 0.000 

Error 42 17.37 0.414  

Total 83 3280.76  

S = 0.6432 R-Sq = 99.47 % R-sq(adj) = 98.95 % 

 

Table G.5 Two-way ANOVA for time and temperature effect on lactic acid 

concentration in the hydrolysis and fermentation of SSF2 

Source DF Adj SS Adj MS F-Value P-Value 

  Time 6 4300.82 716.803 240.39 0.000 

  Temperature 1 388.52 388.517 130.30 0.000 

  Time*Temperature 6 105.43 17.572 5.89 0.003 

Error 14 41.75 2.982  

Total 27 4836.51  

S = 1.7268 R-Sq = 99.14 % R-sq(adj) = 98.34 % 

 

Table G.6 Two-way ANOVA for time and temperature effect on glucose 

concentration in the hydrolysis and fermentation of SSF2 

Source DF Adj SS Adj MS F-Value P-Value 

  Time 6 463.10 77.184 36.29 0.000 

  Temperature 1 18.24 18.241 8.58 0.011 

  Time*Temperature 6 58.32 9.721 4.57 0.009 

Error 14 29.78 2.127  

Total 27 569.45  

S = 1.4585 R-Sq = 94.77 % R-sq(adj) = 89.91 % 

 

Table G.7 Two-way ANOVA for time and solid load effect on lactic acid 

concentration in the hydrolysis and fermentation of SSF2 

Source DF Adj SS Adj MS F-Value P-Value 

  Time 6 8277.8 1379.63 212.72 0.000 

 Solid load 2 1293.5 646.75 99.72 0.000 

  Time*Solid load 12 264.5 22.04 3.40 0.007 

Error 21 136.2 6.49  

Total 41 9971.9  

S = 2.5467 R-Sq = 98.63 % R-sq(adj) = 97.33 % 
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Table G.8 Two-way ANOVA for time and solid load effect on glucose 

concentration in the hydrolysis and fermentation of SSF2 

Source DF Adj SS Adj MS F-Value P-Value 

  Time 6 1084.17 180.695 376.64 0.000 

 Solid load 2 0.65 0.326 0.68 0.518 

  Time*Solid load 12 14.83 1.236 2.58 0.028 

Error 21 10.07 0.480  

Total 41 1109.73  

S = 0.6927 R-Sq = 99.09 % R-sq(adj) = 98.23 % 

 


